
LIS User’s Guide

Submitted under Task Agreement GSFC-CT-2

Cooperative Agreement Notice (CAN) CAN-00OES-01

Increasing Interoperability and Performance of
Grand Challenge Applications in the Earth, Space, Life, and Microgravity

Sciences

February 11, 2005

Revision 4.0

History:
Revision Summary of Changes Date
4.0 Milestone “K” submission February 11, 2005
3.2 LIS version 3.1 release December 17, 2004
3.1 Milestone “G” release July 16, 2004
3.0 Milestone “G” submission May 7, 2004
2.3 Improvements to Milestone “I” November 30, 2003
2.2 - -
2.1 Milestone “I” release November 10, 2003
2.0 Milestone “I” submission August 14, 2003
1.1 Milestone “F” release April 25, 2003
1.0 Milestone “F” submission March 31, 2003

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

1

Contents

1 Introduction 4
1.1 What’s New . 4

1.1.1 LIS 3.1 – 4.0 . 4
1.1.2 LIS 3.0 – 3.1 . 4
1.1.3 LIS 2.0 – 3.0 . 5

2 Background 6
2.1 LIS . 6
2.2 LIS driver . 6
2.3 Community Land Model (CLM) 7
2.4 The Community Noah Land Surface Model 8
2.5 Variable Infiltration Capacity (VIC) Model 8
2.6 GrADS-DODS Server . 9

3 Preliminaries 10

4 Running Modes 11
4.1 Single-Process-Based Running Mode 11
4.2 MPI-Based Running Mode . 11
4.3 GDS-Based Running Mode . 12
4.4 Non-parallel Running Mode . 12
4.5 1 km Global Runs . 12

5 Obtaining the Source Code 13
5.1 Downloading the Source Code . 13
5.2 Source files . 13
5.3 Scripts . 15
5.4 Post-processing . 15
5.5 Opendap Scripts . 16

6 Obtaining the Data-sets 17
6.1 Downloading the Data-sets . 17
6.2 Downloading Parameter Data-sets 17

6.2.1 Example: Downloading the 1/4 Deg. Parameter Data-
sets via http . 17

6.2.2 Example: Downloading the 1/4 Deg. Parameter Data-
sets via GDS . 20

6.3 Downloading the Forcing Data-sets 20
6.3.1 Example: Downloading the 1/4 Deg. Forcing Data-sets

via http . 22
6.4 Downloading the Sample Output Data-sets 23

6.4.1 Example: Downloading The Sample 1/4 Deg. Output
Data-sets Via GDS . 23

6.4.2 Viewing The Sample 1/4 Deg. Output Data-sets 25

2

7 Building the Executable 26
7.1 Compiling In MPI Support . 26
7.2 General Build Instructions . 27

7.2.1 Required Software Libraries 27
7.2.2 Modifying the Makefile 27

7.3 Compiling GrADS-DODS Support 28
7.4 Generating documentation . 28

8 Running The Executable 29
8.1 Configuring Run Via LIS Card File 29

8.1.1 driver namelist . 29
8.1.2 lis run inputs namelist . 30
8.1.3 run domain namelist . 34
8.1.4 param domain namelist 35
8.1.5 landcover namelist . 35
8.1.6 elevation namelist . 36
8.1.7 soils namelist . 36
8.1.8 lai namelist . 37
8.1.9 geos namelist . 37
8.1.10 gdas namelist . 38
8.1.11 nldas namelist . 38
8.1.12 ecmwf namelist . 38
8.1.13 berg namelist . 39
8.1.14 cmap namelist . 39
8.1.15 agrmet namelist . 39
8.1.16 clm2 namelist . 39
8.1.17 noah namelist . 40
8.1.18 vic namelist . 41
8.1.19 opendap namelist . 42

8.2 Domain Example . 42
8.3 Running Over The 1 km Domain 47

9 Output Data Processing 48
9.1 CLM Output . 50
9.2 Noah Output . 53
9.3 VIC Output . 55

A LIS Card File 57

B Makefile 63

3

1 Introduction

This is the LIS’ User’s Guide. This document describes how to download and
install the code and data needed to run the LIS executable for LIS’ “Customer
Delivery” revision 4.0. It describes how to build and run the code, and finally
this document also describes how to download output data-sets to use for val-
idation. Updates to this document will provide more detailed instructions on
how to configure the executable and will address the graphical user interface.

This document consists of 9 sections, described as follows:

1 Introduction: the section you are currently reading

2 Background: general information about the LIS project

3 Preliminaries: general information, steps, instructions, and definitions
used throughout the rest of this document

4 Running modes: different parallel running modes of operation

5 Obtaining the Source Code: the steps needed to download the source
code

6 Obtaining the Data-sets: the steps needed to download the data-sets

7 Building the Executable: the steps needed to build the LIS executable

8 Running the Executable: the steps needed to prepare and submit a
run, also describes the various run-time configurations

9 Output Data Processing: the steps needed to post-process generated
output for visualization

1.1 What’s New

See RELEASE NOTES found in the source.tar.gz file for more details. (See
Section 5.)

1.1.1 LIS 3.1 – 4.0

1. VIC 4.0.5 – LIS’ implementation of VIC has been reinstated.

1.1.2 LIS 3.0 – 3.1

1. New domain-plugin support – facilitates creating new domains.

2. New domain definition support – facilitates defining running domains.
Sub-domain selection now works for both MPI-based and non MPI-based
runs.

3. New parameter-plugin support – facilitates adding new input parameter
data-sets.

4

4. New LIS version of ipolates – facilitates creating new domains and base
forcing data-sets.

5. Compile-time MPI support – MPI libraries are no longer required to com-
pile LIS.

6. Compile-time netCDF support – netCDF libraries are no longer required
to compile LIS.

7. New LIS time manager support – ESMF time manager was removed.
ESMF libraries are not required in this version of LIS.

1.1.3 LIS 2.0 – 3.0

1. Running Modes – Now there is more than one way to run LIS. In addition
to the standard MPI running mode, there are the GDS running mode and
the 1 km running mode. See Section 4 for more details.

2. Sub-domain Selection – Now you are no longer limited to global simula-
tions. You may choose any sub-set of the global domain to run over. See
Section 8.1.3 and Section 8.1.4 for more details. (This is currently only
available for the MPI-based running mode.)

3. Plug-ins – Now it is easy to add new LSM and forcing data-sets into the
LIS driver. See LIS’ Developer’s Guide for more details.

5

2 Background

This section provides some general information about the LIS project and land
surface modeling.

2.1 LIS

The primary goal of the LIS project is to build a system that is capable of
performing high resolution land surface modeling at high performance using
scalable computing technologies. The LIS software system consists of a number
of components: (1) LIS driver: the core software that integrates the use of land
surface models, data management techniques, and high performance computing.
(2) community land surface models such as CLM [4], Noah [6], and VIC [7], and
(3) Visualization and data management tools such as GrADS [1] -DODS [5]
server. One of the important design goals of LIS is to develop an interoperable
system to interface and interoperate with land surface modeling community and
other earth system models. LIS is designed using an object oriented, component-
based style. The adaptable interfaces in LIS can be used by the developers to
ease the cost of development and foster rapid prototyping and development of
applications. The following sections describe the main components of LIS.

2.2 LIS driver

The core of LIS software system is the LIS driver that controls program exe-
cution. The LIS driver is a model control and input/output system (consisting
of a number of subroutines, modules written in Fortran 90 source code) that
drives multiple offline one-dimensional LSMs. The one-dimensional LSMs such
as CLM and Noah, apply the governing equations of the physical processes of
the soil-vegetation-snowpack medium. These land surface models aim to charac-
terize the transfer of mass, energy, and momentum between a vegetated surface
and the atmosphere. When there are multiple vegetation types inside a grid
box, the grid box is further divided into “tiles”, with each tile representing a
specific vegetation type within the grid box, in order to simulate sub-grid scale
variability.

The execution of the LIS driver starts with reading in the user specifica-
tions, including the modeling domain, spatial resolution, duration of the run,
etc. Section 8 describes the exhaustive list of parameters specified by the user.
This is followed by the reading and computing of model parameters. The time
loop begins and forcing data is read, time/space interpolation is computed and
modified as necessary. Forcing data is used to specify the boundary conditions
to the land surface model. The LIS driver applies time/space interpolation to
convert the forcing data to the appropriate resolution required by the model.
The selected model is run for a vector of “tiles” and output and restart files are
written at the specified output interval.

Some of the salient features provided by the LIS driver include:

6

• Vegetation type-based “tile” or “patch” approach to simulate sub-grid
scale variability.

• Makes use of various satellite and ground-based observational systems.

• Derives model parameters from existing topography, vegetation, and soil
coverages.

• Extensible interfaces to facilitate incorporation of new land surface models,
forcing schemes.

• Uses a modular, object oriented style design that allows “plug and play”
of different features by allowing user to select only the components of
interest while building the executable.

• Ability to perform regional modeling (only on the domain of interest).

• Provides a number of scalable parallel processing modes of operation.

Please refer to the software design document for a detailed description of the
design of LIS driver. The LIS developer’s guide describes how to use the exten-
sible interfaces in LIS. The “plug and play” feature of different components is
described in this document.

2.3 Community Land Model (CLM)

CLM (Community Land Model) is a 1-D land surface model, written in Fortran
90, developed by a grass-roots collaboration of scientists who have an interest
in making a general land model available for public use. LIS currently uses
CLM version 2.0. CLM version 2.0 was released in May 2002. The source
code for CLM 2.0 is freely available from the National Center for Atmospheric
Research (NCAR) [4]. The CLM is used as the land model for the Community
Climate System Model (CCSM) (http://www.ccsm.ucar.edu/), which includes
the Community Atmosphere Model (CAM) (http://www.cgd.ucar.edu/cms/).
CLM is executed with all forcing, parameters, dimensioning, output routines,
and coupling performed by an external driver of the user’s design (in this case
done by LIS). CLM requires pre-processed data such as the land surface type,
soil and vegetation parameters, model initialization, and atmospheric boundary
conditions as input. The model applies finite-difference spatial discretization
methods and a fully implicit time-integration scheme to numerically integrate
the governing equations. The model subroutines apply the governing equations
of the physical processes of the soil-vegetation-snowpack medium, including the
surface energy balance equation, Richards’ [12] equation for soil hydraulics, the
diffusion equation for soil heat transfer, the energy-mass balance equation for
the snowpack, and the Collatz et al. [9] formulation for the conductance of
canopy transpiration.

7

2.4 The Community Noah Land Surface Model

The community Noah Land Surface Model is a stand-alone, uncoupled, 1-D col-
umn model freely available at the National Centers for Environmental Prediction
(NCEP; [6]). The name is an acronym representing the various developers of the
model (N: NCEP; O: Oregon State University, Dept. of Atmospheric Sciences;
A: Air Force (both AFWA and AFRL - formerly AFGL, PL); and H: Hydro-
logic Research Lab - NWS (now Office of Hydrologic Development – OHD)).
Noah can be executed in either coupled or uncoupled mode. It has been coupled
with the operational NCEP mesoscale Eta model [10] and its companion Eta
Data Assimilation System (EDAS) [13], and the NCEP Global Forecast System
(GFS) and its companion Global Data Assimilation System (GDAS). When
Noah is executed in uncoupled mode, near-surface atmospheric forcing data
(e.g., precipitation, radiation, wind speed, temperature, humidity) is required
as input. Noah simulates soil moisture (both liquid and frozen), soil temper-
ature, skin temperature, snowpack depth, snowpack water equivalent, canopy
water content, and the energy flux and water flux terms of the surface energy
balance and surface water balance. The model applies finite-difference spatial
discretization methods and a Crank-Nicholson time-integration scheme to nu-
merically integrate the governing equations of the physical processes of the soil
vegetation-snowpack medium, including the surface energy balance equation,
Richards’ [12] equation for soil hydraulics, the diffusion equation for soil heat
transfer, the energy-mass balance equation for the snowpack, and the Jarvis [11]
equation for the conductance of canopy transpiration.

2.5 Variable Infiltration Capacity (VIC) Model

Variable Infiltration Capacity (VIC) model is a macroscale hydrologic model,
written in C, being developed at the University of Washington and Prince-
ton University. The VIC code repository along with the model description
and source code documentation is publicly available at the Princeton web-
site [7]. VIC is used in macroscopic land use models such as SEA - BASINS
(http://boto.ocean.washington.edu/seasia/intro.htm). VIC is a semi-distributed,
grid-based hydrological model, which parameterizes the dominant hydromete-
orological processes taking place at the land surface - atmospheric interface.
The execution of VIC model requires preprocessed data such as precipitation,
temperature, meteorological forcing, soil and vegetation parameters, etc. as
input. The model uses three soil layers and one vegetation layer with energy
and moisture fluxes exchanged between the layers. The VIC model represents
surface and subsurface hydrologic processes on a spatially distributed (grid cell)
basis. Partitioning grid cell areas to different vegetation classes can approximate
sub-grid scale variation in vegetation characteristics. VIC models the processes
governing the flux and storage of water and heat in each cell-sized system of
vegetation and soil structure. The water balance portion of VIC is based on
three concepts: 1) Division of grid-cell into fraction sub-grid vegetation cover-
ages.

8

2) The variable infiltration curve for rainfall/runoff partitioning at the land sur-
face.
3) A baseflow/deep soil moisture curve for lateral baseflow.

Water balance calculations are preformed at three soil layers and within a
vegetation canopy. An energy balance is calculated at the land surface. A full
description of algorithms in VIC can be found in the references listed at the
VIC website.

2.6 GrADS-DODS Server

A GrADS-DODS Server (GDS) is a data server built upon the Grid Analysis
and Display System (GrADS) and the Distributed Oceanographic Data System
(DODS).

GrADS is an earth science data manipulation and visualization tool under
development at the Center for Ocean-Land-Atmosphere Studies (COLA) (http:
//http://grads.iges.org/cola.html). See http://grads.iges.org/grads/
grads.html for more detailed information about GrADS.

DODS, also called the Open source Project for a Network Data Access Pro-
tocol (OPeNDAP), is a protocol for serving data-sets stored in various formats
over a network. See http://www.unidata.ucar.edu/packages/dods/ for more
detailed information about DODS.

A GDS may be used to provide the LIS driver with the forcing and input
parameter data needed to run an LSM.

A GDS is an optional component of the LIS system. LIS may be run without
using a GDS to access the forcing and input parameter data-sets. All necessary
forcing and input parameter data-sets may be stored on locally-accessable hard-
disks and read in directly by the LIS driver, provided the computer system has
sufficient memory.

The intent of a GDS for the LIS project is to provide the LIS driver with
subsets of the forcing and input parameter data-sets, so that large-scale, high-
resolution domains may be broken-up/parallelized and processed across many
compute-nodes of a Beowulf cluster.

9

http://http://grads.iges.org/cola.html
http://http://grads.iges.org/cola.html
http://grads.iges.org/grads/grads.html
http://grads.iges.org/grads/grads.html
http://www.unidata.ucar.edu/packages/dods/

3 Preliminaries

This code has been compiled and run on IBM AIX systems, SGI IRIX64 6.5
systems, and Linux PC (Intel/AMD based) systems. These instructions expect
that you are using such a system. In particular you need

Software:

• SGI

– MIPSpro version 7.3.1.1m

– Message Passing Toolkit, mpt, version 1.5.3.0

– GNU’s make, gmake, version 3.77

• Linux

– Absoft’s Pro Fortran Software Developement Kit, version 8.0
or
Lahey/Fujitsu’s Fortran 95 Compiler, release L6.00c

– GNU’s C and C++ compilers, gcc and g++, version 2.96

– MPICH , version 1.2.5.2

– GNU’s make, gmake, version 3.77

• IBM

– XL Fortran version 8 release 1

– GNU’s make, gmake, version 3.77

System Resources:
1/4 deg 5 km 1 km

memory 250 MB 32 GB 800 MB (per patch)
hard disk space 3 GB 46 GB 850 GB
source 64 MB 64 MB 64 MB
input data 1.5 GB 25 GB 200 GB
output data 1 GB 20 GB 640 GB

Note, the requirements for input and output data are for a 1-day simulation.

You need to create a working directory on your system that has sufficient
disk space to install and run in. Throughout the rest of this document this
directory shall be refered to as $WORKING.

10

4 Running Modes

The computational and resource requirements increase significantly for global
modeling at high resolutions such as 5 km and 1 km. The land surface mod-
eling component in LIS is designed to handle these requirements and perform
high-performance, parallel simulation of global, regional, and local land surface
processes with a number of land surface models.

LIS is designed to operate in a number of high performance running modes
to meet the diverse requirements of distributed memory and shared memory
platforms. LIS can operate in two different parallel modes based on the way
data is handled by the LIS driver. In the message passing interface (MPI)-based
paradigm, a master processor handles data for the entire domain, computes do-
main decomposition, and subsequently distributes data onto the compute nodes.
This paradigm is limited by the amount of memory available to the master pro-
cessor. On a shared memory platform, a pool of processors can be used to make
a large amount of memory available. To handle increased memory requirements
and the limited resources available on a distributed memory environment, a
GrADS-DODS Server (GDS)-based running mode can be used in LIS. In this
mode of operation, the compute nodes retrieve data from a GDS. This mode of
operation is no longer constrained by the lack of a large pool of memory on the
master processor.

The LIS driver also includes the capabillity to perform regional modeling
in addition to global scales. The domain information can be specified by a
user, and the LIS driver handles the subsetting tasks. In the MPI-mode, the
subsetting information is derived from a larger domain, whereas in the GDS-
mode, the subsetting is carried out by requesting appropriate data from the
GDS-server. The details of using these different options are described in the
following sections.

Note, both parallel running modes require the Message Passing Interface
libraries. If a single-process, i.e. non-parallel, version of LIS is desired, LIS may
be compiled without the MPI libraries.

4.1 Single-Process-Based Running Mode

LIS’ default running mode is a non-parallel running mode. Simply follow the
directions in this document to run LIS in this mode.

4.2 MPI-Based Running Mode

In order to run LIS using MPI, you must first install the MPI libraries onto
your system. Then follow the extra instructions in Section 7 to compile in MPI
support.

11

4.3 GDS-Based Running Mode

In order to run LIS using the GDS-based running mode, you must first install
a GDS and a DODS enabled version of GrADS. Then you must compile the
GDS-based running mode support into LIS’ executable.

To install a GrADS-DODS Server simply go to http://grads.iges.org/
grads/gds/ and follow the on-line instructions.

Once you have installed the GDS, you must install a DODS enabled version
of GrADS. Go to http://grads.iges.org/grads/grads.html and follow the
downloading instructions.

After you have installed both the GDS and the GrADS packages, you must
edit the GDS data retrieving script, $WORKING/LIS/opendap scripts/getdata.pl.
You must modify the definitions of the $server and $GrADS variables to reflect
your installation.

See Section 5 for instructions on downloading the source code, and see Sec-
tion 7.3 for instructions on compiling the GDS-based running mode support into
LIS’ executable.

Note, currently, the GDS-based running mode only supports global simula-
tions.

4.4 Non-parallel Running Mode

To run LIS in the non-parallel running mode, you simply remove the references
to the Message Passing Interface libraries and recompile the source code. See
Section 7 for details.

4.5 1 km Global Runs

The 1 km global run is a special case of the GDS-based running mode. You
must first follow the steps in Section 4.3 to properly configure your system.
Once configured, you must run the special 1 km scripts.

The main 1 km script drives a pool-of-tasks scheme for parallelizing the
computations over the global 1 km domain. This global domain has already
been divided into 1183 sub-domain patches, each containing 720 × 300 grid-
points. The driver script monitors the availability of each compute node of LIS’
Linux cluster, and it pushes a sub-domain patch onto each free node. Should,
for any reason, the computations on a compute node crash, the corresponding
sub-domain patch is returned to the list of patches-to-complete (the “pool”),
where it will wait until it is reassigned.

12

http://grads.iges.org/grads/gds/
http://grads.iges.org/grads/gds/
http://grads.iges.org/grads/grads.html

5 Obtaining the Source Code

This section describes how to obtain the source code needed to build the LIS
executable.

5.1 Downloading the Source Code

To obtain the source code needed for LIS’ “Customer Delivery” revision 4.0:

1. Go to LIS’ “Public Release Home Page”

Go to http://lis.gsfc.nasa.gov/

Follow the “Source Codes” link.

Follow the “LIS 4.0 Code Release” link.

2. From LIS’ “Public Release Home Page”

Follow the “LIS 4.0 Source Code and Scripts” link.

3. Download the required source.tar.gz and scripts.tar.gz files into your work-
ing directory, $WORKING/LIS.

Use the “LIS driver and Land Surface Models” link to get source.tar.gz.

Use the “LIS scripts” link to get scripts.tar.gz.

4. Unpack these files. Run (in the order listed):

% gzip -dc source.tar.gz | tar xf -
% gzip -dc scripts.tar.gz | tar xf -

Unpacking the scripts.tar.gz file will also create the input directory tree
needed for downloading the input data-sets.

5. Download the optional (if desired) postproc.tar.gz and opendap scripts.tar.gz
files into your working directory, $WORKING/LIS.

Use the “Post-processing scripts” link to get postproc.tar.gz.

Use the “GDS scripts” link to get opendap scripts.tar.gz.

Unpack them.

% gzip -dc postproc.tar.gz | tar xf -
% gzip -dc opendap scripts.tar.gz | tar xf -

5.2 Source files

Unpacking the source.tar.gz file will create a $WORKING/LIS/src sub-directory.
The structure of src is as follows:

13

http://lis.gsfc.nasa.gov/

Directory Name Synopsis
baseforcing Top level directory for base forcing methods
baseforcing/berg Routines for handling ECMWF reanalysis forcing product
baseforcing/ecmwf Routines for handling ECMWF forcing product
baseforcing/geos Routines for handling GEOS forcing product
baseforcing/gdas Routines for handling GDAS forcing product
baseforcing/gdas-ncep Routines for handling GDAS forcing product (NCEP port)
baseforcing/nldas Routines for handling NLDAS forcing product
core LIS core routines
domain-plugin Modules defining the function table registry of

included domain types
domains Routines for creating tiles
forcing-plugin Modules defining function table registries of

included model forcing, observed radiation,
and precipitation forcing products.

interp Interpolation routines (Adopted from NCEP’s
ipolates library)

lib Libraries needed for linking
lsm-plugin Modules defining the function table registry of

included LSMs
lsms/clm2 Top level clm2 land surface model sub-directory
lsms/clm2/biogeochem Biogeochemistry routines
lsms/clm2/biogeophys Biogeophysics routines (e.g., surface fluxes)
lsms/clm2/camclm share Code shared between the clm2 and cam (e.g., calendar information)
lsms/clm2/csm share Code shared by all the geophysical model components of the

Community Climate System Model (CCSM). Currently contains
code for CCSM message passing orbital calculations and
system utilities

lsms/clm2/ecosysdyn Ecosystem dynamics routines (e.g., leaf and stem area index)
lsms/clm2/main Control (driver) routines
lsms/clm2/mksrfdata Routines for generating surface data-sets
lsms/clm2/utils Independent utility routines
lsms/hyssib hyssib land surface model
lsms/mosaic mosaic land surface model
lsms/noah.2.6 Noah land surface model version 2.6
lsms/noah.2.6-ncep Noah land surface model version 2.6 (NCEP port)
lsms/noah.2.7 Noah land surface model version 2.7.1
lsms/ssib ssib land surface model
lsms/vic VIC land surface model

14

make Makefile and needed headers
obsprecips Top level directory for observed precipitation

products
obsprecips/cmap Routines for handling CMAP precipitation product
obsprecips/huff Routines for handling HUFFMAN precipitation product
obsprecips/pers Routines for handling PERSIANN precipitation product
obsrads Top level directory for observed radiation

products
obsrads/agrmet Routines for handling AGRMET radiation product
param-plugin Modules defining the function table registry of

included input parameter reading routines
params Top level directory for input parameter

products
params/elev Routines for handling elevation correction data
params/lai Routines for handling leaf/stem area index data
params/landcover Routines for handling land cover classification data
params/soils Routines for handling soil classification data
tables Contains the GRIB tables for writing grib output
w3lib Contains the new GRIB library source code from NCEP

Source code documentation may be found on LIS’ web-site
on LIS’ “Public Release Home Page”. Follow the “LIS 4.0 Source Code Docu-
mentation” link.

5.3 Scripts

The scripts.tar.gz file contains a script for compiling and building the executable
and a sample card file used for running the LIS executable and for configuring
the individual runs. These are described in Section 8.

Unpacking the scripts.tar.gz file will place the following files into the $WORK-
ING/LIS sub-directory:

File Name Synopsis
lis.crd Sample card file
comp.csh Compile and build script
utils The in-line documentation processing scripts
input An empty directory tree to hold the input data

5.4 Post-processing

The postproc.tar.gz file is not yet available for this release.
The postproc.tar.gz file contains the source and data files needed for gener-

ating data-plots using GrADS [1]. Post-processing is described in Section 9.
Unpacking the postproc.tar.gz file will create a $WORKING/LIS/postproc

sub-directory. The structure of postproc is as follows:

15

http://lis.gsfc.nasa.gov/

File Name Synopsis
noah.25.ctl GrADS descriptor file for 1/4 deg. Noah data
noah.25.gs Script for generating 1/4 deg. Noah data plots
clm.25.ctl GrADS descriptor file for 1/4 deg. CLM data
clm.25.gs Script for generating 1/4 deg. CLM data plots
vic.25.ctl GrADS descriptor file for 1/4 deg. VIC data
vic.25.gs Script for generating 1/4 deg. VIC data plots
pdef Directory containing global pdef files

(only needed when reading 1-d output data files)

5.5 Opendap Scripts

The opendap scripts.tar.gz file is not yet available for this release.
The opendap scripts.tar.gz file contains the scripts used by LIS to access

data from a GDS server.
Unpacking the opendap scripts.tar.gz file will create a $WORKING/LIS/opendap scripts

sub-directory. The structure of opendap scripts is as follows:

File Name Synopsis
getdata.pl Main GDS data-retrieval script
links.sh Symbolic link generating script

The getdata.pl Perl script retrieves data from a GDS by issuing GrADS
commands. See the documentation for getdata.pl for more details about this
script.

Note, you must modify the definitions of the $server and $GrADS variables
to reflect your installation of a GDS and GrADS. See Section 4.3.

LIS never directly calls the getdata.pl script by name, rather it calls the
script by one of the script’s many aliases. These aliases (or symbolic links)
must be created before LIS is run. Run the links.sh script to generate all the
links needed by LIS driver.

16

6 Obtaining the Data-sets

This section describes how to obtain the data-sets needed to run the LIS exe-
cutable.

6.1 Downloading the Data-sets

To obtain the data-sets needed for LIS’ “Customer Delivery” revision 4.0:

1. Go to LIS’ “Home Page”

Go to http://lis.gsfc.nasa.gov/

2. Follow the “Get LIS Data” link.

The Milestone “K” Section provides links to the land surface parameters
and atmospheric forcing data.

6.2 Downloading Parameter Data-sets

Land surface models simulate the physical and dynamical processes of the land
surface. Driven by external forcing, the spatial and temporal evolution of these
processes are intrinsically determined by the physical and dynamical properties,
or parameters, of the land surface. Please follow the link to land surface param-
eters under Milestone “K” to obtain parameter data-sets. It is recommended
that the files be organized according to the domain resolution and land surface
model type.

The following section provide examples of how to download the 1/4 deg.
parameter data-sets. Downloading the 5 km and 1 km parameter data-sets is
similar.

6.2.1 Example: Downloading the 1/4 Deg. Parameter Data-sets via
http

To obtain the 1/4 degree parameter data-sets needed for LIS’ “Customer De-
livery” revision 4.0 using http:

1. From the Milestone “K” Section (See Section 6.1)

Follow the “Land Surface Parameters” link.

2. Get the “UMD Land/Sea Mask” file from the “Data-sets used by all LIS
land surface models” section.

Use the “HTTP” link to save the UMD land/sea mask file into
$WORKING/LIS/input/GVEG/1 4deg/

3. Get the “UMD Vegetation Classification map” file from the “Data-sets
used by all LIS land surface models” section.

Use the “HTTP” link to save the UMD tile-space vegetation file into
$WORKING/LIS/input/GVEG/1 4deg/

17

http://lis.gsfc.nasa.gov/

4. Get the “Soil color” file from the “Data-sets used by all LIS land surface
models” section.

Use the “HTTP” link to save the soil color file into
$WORKING/LIS/input/BCS/1 4deg/

5. Get the “Soil clay fraction” file from the “Data-sets used by all LIS land
surface models” section.

Use the “HTTP” link to save the soil clay fraction file into
$WORKING/LIS/input/BCS/1 4deg/

6. Get the “Soil sand fraction” file from the “Data-sets used by all LIS land
surface models” section.

Use the “HTTP” link to save the soil sand fraction file into
$WORKING/LIS/input/BCS/1 4deg/

7. Get the “Canopy height look-up table” from the “CLM Data-sets” section.

Use the html link to save the canopy height look-up table as clm2 ptcanhts.txt
into
$WORKING/LIS/input/BCS/clm parms

8. Get the “Vegetation classification look-up table” from the “CLM Data-
sets” section.

Use the html link to save the vegetation classification look-up table as
umdvegparam.txt into
$WORKING/LIS/input/BCS/clm parms

9. Get the “Monthly Leaf Area Index” files from the “CLM Data-sets” sec-
tion.

Follow the html link.

Then save the 12 monthly leaf area index files into $WORKING/LIS/input/AVHRR LAI

Return to main parameter data page.

10. Get the “Monthly Stem Area Index” files from the “CLM Data-sets” sec-
tion.

Follow the html link. (The same link as for LAI.)

Then save the 12 monthly stem area index files into $WORKING/LIS/input/AVHRR LAI

Return to main parameter data page.

11. Get the “Vegetation look-up table” from the “Noah Data-sets” section.

Use the html link to save the vegetation look-up table as noah.vegparms.txt
into
$WORKING/LIS/input/BCS/noah parms

18

12. Get the “Soil look-up table” from the “Noah Data-sets” section.

Use the html link to save the soil look-up table as noah.soilparms.txt into
$WORKING/LIS/input/BCS/noah parms

13. Get the “Quarterly albedo climatology” from the “Noah Data-sets” sec-
tion.

Follow the html link.

Then save the 4 quarterly albedo climatology files into
$WORKING/LIS/input/BCS/1 4deg/NOAH

Return to main parameter data page.

14. Get the “Monthly greeness fraction climatology” from the “Noah Data-
sets” section.

Follow the html link.

Then save the 12 monthly greeness fraction climatology files into
$WORKING/LIS/input/BCS/1 4deg/NOAH

Return to main parameter data page.

15. Get the “Maximum snow albedo” from the “Noah Data-sets” section.

Use the “HTTP” link to save the maximum snow albedo files into
$WORKING/LIS/input/BCS/1 4deg/NOAH

16. Get the “Bottom temperature without elevation correction” files from the
“Noah Data-sets” section.

Use the “HTTP” link to save the bottom temperature without elevation
correction file into
$WORKING/LIS/input/BCS/1 4deg/NOAH

17. Get the “Vegetation look-up table” from the “VIC Data-sets” section.

Use the html link to save the vegetation look-up table as veg lib.txt into
$WORKING/LIS/input/BCS/vic parms

18. Get the “Soil look-up table” from the “VIC Data-sets” section.

Use the html link to save the soil look-up table as soil.txt into
$WORKING/LIS/input/BCS/vic parms

Note, files with names ending in .gz have been compressed using GNU’s gzip.
They must be “unzipped” before using. Files with names ending in .tar.gz have
been packaged using GNU’s tar and compressed using GNU’s gzip. They must
be “unzipped” and “untarred” before using.

19

6.2.2 Example: Downloading the 1/4 Deg. Parameter Data-sets via
GDS

To obtain the 1/4 degree parameter data-sets needed for LIS’ “Customer De-
livery” revision 4.0 using GDS, consider the following example:

Getting the Noah “Bottom Temperature”, tbot, data.
Click on the “Tbot” link in the “GDS” column. You will see screen-shot 1.
Then using a DODS enabled GrADS client (see Section 4.3), issue the fol-

lowing GrADS’ commands at the GrADS’ prompt:

ga-> sdfopen http:// -- registered users will see a valid url --
ga-> set fwex
ga-> set t 1
ga-> set x 1 1440
ga-> set y 1 600
ga-> set fwrite -be -sq tbot.bfsa
ga-> set gxout fwrite
ga-> d tbot
ga-> quit

where:

“http:// – registered users will see a valid url –” comes from the “DODS
URL:” line.

“set t 1” comes from the “Time:” line – (1 points).

“set x 1 1440” comes from the “Longitude:” line – (1440 points, avg. res.
0.25◦).

“set y 1 600” comes from the “Latitude:” line – (600 points, avg. res.
0.25◦).

“d tbot” comes from the list of “Variables:”.

This will save the tbot data onto your local disk in the file tbot.bfsa.
The other data-sets may be obtained from LIS’ public GDS in a similar

manner. Note, not all the data-sets are in a format suitable for serving through a
GDS. Those data-sets must be obtained using the steps outlined in the previous
“http” example (Section 6.2.1).

6.3 Downloading the Forcing Data-sets

As mentioned earlier, the land surface models in LIS are forced by model-derived
output and satellite and ground-based observations. The data-sets are available
through the above link to atmospheric forcing data under the Milestone “K”
data page.

20

Figure 1: Screen-shot of tbot GDS link

21

6.3.1 Example: Downloading the 1/4 Deg. Forcing Data-sets via
http

To obtain the 1/4 degree forcing data-sets needed for LIS’ “Customer Delivery”
revision 4.0 using http:

1. From the Milestone “K” Section (See Section 6.1)

Follow the “Atmospheric Forcing Data” link.

2. Get the “GDAS” file.

Use the “HTTP” link to save the GDAS forcing data-set into
$WORKING/LIS/input/FORCING/GDAS/

Note, this is 1-month sample of GDAS forcing data from 01 June 2001 to
30 June 2001.

3. Get the “GEOS3” file.

Use the “HTTP” link to save the GEOS3 forcing data-set into
$WORKING/LIS/input/FORCING/GEOS/

Note, this is 1-month sample of GDAS forcing data from 01 June 2001 to
30 June 2001.

4. Get the “GDAS Elevation Correction” file.

Follow the html link.

Use the “HTTP” link to save the GDAS elevation correction data differ-
ences file into
$WORKING/LIS/input/FORCING/

Return to main forcing data page.

5. Get the “GEOS3 Elevation Correction” file.

Follow the html link.

Use the “HTTP” link to save the GEOS3 elevation correction data differ-
ences file into
$WORKING/LIS/input/FORCING/

Return to main forcing data page.

6. Get the “GEOS4 Elevation Correction” file.

Follow the html link.

Use the “HTTP” link to save the GEOS4 elevation correction data differ-
ences file into
$WORKING/LIS/input/FORCING/

Return to main forcing data page.

22

7. Get the “AGRMET shortwave flux” file.

Use the “HTTP” link to save the AGRMET shortwave flux file into
$WORKING/LIS/input/FORCING/AGRMET/

Note, this is 1-month sample of AGRMET forcing data from 01 June 2001
to 30 June 2001.

8. Get the “AGRMET longwave flux” file.

Use the “HTTP” link to save the AGRMET longwave flux file into
$WORKING/LIS/input/FORCING/AGRMET/

Note, this is 1-month sample of AGRMET forcing data from 01 June 2001
to 30 June 2001.

9. Get the “CMAP Precipitaion” file.

Use the “HTTP” link to save the CMAP precipitation file into
$WORKING/LIS/input/FORCING/CMAP/

Note, this is 1-month sample of AGRMET forcing data from 01 June 2001
to 30 June 2001.

Note, files with names ending in .gz have been compressed using GNU’s gzip.
They must be “unzipped” before using. Files with names ending in .tar.gz have
been packaged using GNU’s tar and compressed using GNU’s gzip. They must
be “unzipped” and “untarred” before using.

Note, to obtain data outside of this 1-month sample, you must use the GDS.
Obtaining the forcing data-sets via the GDS is similar to the example given

in Section 6.2.2.

6.4 Downloading the Sample Output Data-sets

In addition to the above required parameter and forcing data-sets, LIS provides
sample output data-sets that may be downloaded and used for comparision.
These data-sets are available through LIS’ public data server. You must use a
DODS enabled GrADS client (see Section 4.3) to access the data.

6.4.1 Example: Downloading The Sample 1/4 Deg. Output Data-
sets Via GDS

To obtain the sample 1/4 degree output data-sets from LIS’ “Customer Deliv-
ery” revision 4.0 using GDS, consider the following example:

Getting the Noah GEOS output data.

1. Go to LIS’ public data server

Go to http:// – registered users will see a valid url –

2. Then follow the “LIS-DATA” → “Output” → “global” → “1 4deg” links.

3. Then click on the “NOAH-GEOS“ “info” link.

23

You will be presented with a page similar to screen-shot 1.
To get only the “net shortwave radiation” variable, issue the following GrADS’

commands at the GrADS’ prompt:

ga-> sdfopen http:// -- registered users will see a valid url --
ga-> set fwex
ga-> set t 1 8
ga-> set x 1 1440
ga-> set y 1 600
ga-> set fwrite -be -sq swnet.bfsa
ga-> set gxout fwrite
ga-> d swnet
ga-> quit

Again, where: “http:// – registered users will see a valid url –” comes from
the “DODS URL:” line.

To get all variables, issue the following GrADS’ commands at the GrADS’
prompt:

ga-> sdfopen http:// -- registered users will see a valid url --
ga-> set fwex
ga-> set t 1 8
ga-> set x 1 1440
ga-> set y 1 600
ga-> set fwrite -be -sq noah.geos.bfsa
ga-> set gxout fwrite
ga-> d swnet
ga-> d lwnet
ga-> d qle
ga-> d qh
ga-> d qg
ga-> d snowf
ga-> d rainf
ga-> d evap
ga-> d qs
ga-> d qsb
ga-> d qsm
ga-> d delsoilmoist
ga-> d delswe
ga-> d avgsurft
ga-> d albedo
ga-> d swe
ga-> d soilmoist1
ga-> d soilmoist2
ga-> d soilmoist3
ga-> d soilmoist4

24

ga-> d soilwet
ga-> d tveg
ga-> d esoil
ga-> d rootmoist
ga-> d wind
ga-> d rainfforc
ga-> d snowfforc
ga-> d tair
ga-> d qair
ga-> d psurf
ga-> d swdown
ga-> d lwdown
ga-> quit

Again, where: “http:// – registered users will see a valid url –” comes from
the “DODS URL:” line.

See Section 6.2.2 for more details.
Downloading the “CLM-GEOS” and “VIC-GEOS” data-sets is similar.

6.4.2 Viewing The Sample 1/4 Deg. Output Data-sets

Instead of downloading these sample output data-sets, you may view the data
on-line. Follow the instructions in Section 6.4.1 that take you to the “NOAH-
GEOS” “info” page on LIS’ public data server. The follow the “Visualize!” link
for whichever variable you wish to see. You will be presented with an easy-to-use
interface for examining a data-plot of your chosen variable.

25

7 Building the Executable

This section describes how to build the source code and create LIS’ executable
– named LIS.

1. Perform the steps described in Section 5.

2. Compile the new GRIB library, libw3.a. You must edit the Makefile lo-
cated in $WORKING/LIS/src/w3lib. Uncomment the appropriate block
of compiler flags, then run gmake.

3. Compile the LIS source code.

If you are building on an SGI or IBM system, simply run the compiling
script.

(a) Change directory into $WORKING/LIS/.
% cd $WORKING/LIS/

(b) Run the compiling script.
% ./comp.csh

If you are building on a Linux PC system, you must edit the Makefile
located in $WORKING/LIS/src/make.

You must edit the definition of ESMF ARCH. Currently it is defined to be
linux absoft, which specifies that you are using Absoft’s Fortran com-
piler. If you are using Lahey’s Fortran compiler, change ESMF ARCH to
linux lf95.

Then run the compiling script.

(a) Change directory into $WORKING/LIS/.
% cd $WORKING/LIS/

(b) Run the compiling script.
% ./comp.csh

See Appendix B to see the Makefile.

7.1 Compiling In MPI Support

• Linux PC

If you are building on a Linux PC system, you must edit the Makefile
located in $WORKING/LIS/src/make.

You must change the definition of MPI PREFIX to the directory where you
installed MPICH. Currently MPI PREFIX is set to /data1/jim/local/mpich-
1.2.4-absoft. Then you must uncomment the appropriate FC and CC defi-
nitions to use mpif90 and mpicc.

26

• All Systems (including Linux PC)

You must edit the misc.h file located in $WORKING/LIS/src/make.

Change the line that reads “#undef SPMD” to “#define SPMD”.

Then run the compiling script, described above.

7.2 General Build Instructions

This section describes how to build the LIS code on a platform other than those
discussed in Section 3.

7.2.1 Required Software Libraries

In order to build the LIS executable, the following libraries must be installed
on your system:

• Message Passing Interface (MPI) – If you wish to run the MPI-based
running mode

– vendor supplied, or

– MPICH
(http://http://www-unix.mcs.anl.gov/mpi/mpich/)

• Earth System Modeling Framework (ESMF) version 0.0.2p5 – If you wish
to use the ESMF version of LIS. (http://www.esmf.ucar.edu/)

• w3lib – Source include in the source.tar.gz file.

To install the MPI libraries, follow the instructions provided at the MPI
URL listed above.

Note: Due to the mix of programing languages (Fortran and C) used by LIS,
you may run into linking errors when building the LIS executable.

When compiling code using Absoft’s Pro Fortran SDK, set the following
compiler options:

-YEXT NAMES=LCS -s -B108 -YCFRL=1
These must be set for each of the above libraries.

7.2.2 Modifying the Makefile

This section lists the variables in the Makefile that must be set by the user
before compiling.

27

Variable Description
UNAMES set by call to uname to determine what type of system you are using.

Determine which variable (UNAMES or UMACHINE) will contain the needed
information and use it.

UMACHINE set by call to uname to determine what type of system you are using.
Determine which variable (UNAMES or UMACHINE) will contain the needed
information and use it.

MPI PREFIX path to where mpi libraries are installed
LIB MPI path to mpi libraries
INC MPI path to mpi header files
ESMF DIR path to where esmf libraries are installed
LIB ESMF path to esmf libraries
MOD ESMF path to esmf modules
ESMF ARCH system on which esmf libraries were compiled
FC fortran compiler
CPP C preprocessor
LIB DIR path to where lis libraries are installed
CPPFLAGS flags for C preprocessor
CFLAGS flags for C compiler
FFLAGS flags for Fortran compiler
FOPTS additional options for compiler and linker
LDFLAGS flags for linker
NEW ARCH HERE replace this with the type of system you are

using, either the result from uname -s or uname -m.
E.g., IRIX64 or i686

Note: For Linux architectures, the default ESMF ARCH is set to be linux absoft.
For Linux systems using the Lahey Fortran compiler, ESMF ARCH must be changed
to linux lf95.

7.3 Compiling GrADS-DODS Support

The above building instructions generate a LIS executable that reads input data
off of local disk (the MPI-based running mode). To compile an executable that
uses a GrADS-DODS server 1 to retrieve input data files (the GDS-based run-
ning mode), you must edit the Makefile. Find the appropriate FFLAGS definition
in the Makefile. Add -DOPENDAP to the end of the definition. Then follow the
above building instructions.

7.4 Generating documentation

LIS code uses the ProTex documenting system [2]. The documentation in LATEX
format can be produced by typing gmake doc in the $WORKING/LIS/src/make
directory. This command produces documentation, generating all the files in
$WORKING/LIS/doc directory. These files can be easily converted to pdf or
html formats using utilites such as pdflatex or latex2html.

1This LIS distribution is configured to retrieve data using LIS’ GrADS-DODS server.

28

8 Running The Executable

This section describes how to run the LIS executable. Once the LIS executable
is built, a simulation can be performed using the lis.crd file. As described in
Section 4, LIS is designed to support several modes of operation, in particular,
single-process or parallel modes of operation.

The single-process version of LIS is executed by the following command
issued in the $WORKING/LIS directory.

% ./LIS
The parallel version of LIS must be run through an mpirun script. Assuming

that MPI is installed correctly, the LIS simulation is carried out by the following
command issued from in the $WORKING/LIS directory.

% mpirun -np N ./LIS
The -np N flag indicates the number of processes to use in the run, where

you replace N with the number of processes to use. On a multiprocessor machine,
the parallel processing capbabilities of LIS can be exploited using this flag.

See Section 8.3 for instructions on running LIS over the global 1 km domain.

8.1 Configuring Run Via LIS Card File

This section describes how to configure your LIS run by specifying the options
in the lis.crd “card file”, which is nothing more than a set of Fortran namelists.

See Appendix A to see a sample lis card file.

8.1.1 driver namelist

The driver namelist of the card file consists of the following options:

LIS%d%DOMAIN
LIS%d%LSM
LIS%f%FORCE
LIS%d%LANDCOVER
LIS%d%SOIL
LIS%d%ELEV
LIS%p%LAI

LIS%d%DOMAIN specifies the projection of the grid for the run. Acceptable
values are:

Value Description
1 Lat/Lon projection

LIS%m%LSM specifies the land surface model to run. Acceptable values are:

29

Value Description
1 Noah
2 CLM
3 VIC
4 mosaic
5 hyssib
6 ssib

LIS%f%FORCE specifies the forcing data source for the run. Acceptable values
are:

Value Description
1 GDAS
2 GEOS
3 ECMWF
4 NLDAS
5 GSWP
6 BERG

LIS%d%LANDCOVER specifies the vegetation classification data for the run.
Acceptable values are:

Value Description
1 UMD AVHRR

LIS%d%SOIL specifies the soil classification data for the run. Acceptable
values are:

Value Description
2 FAO
3 STATSGO

LIS%p%ELEV specifies elevation correction data source for the run. Accept-
able values are:

Value Description
1 gtopo30 based

LIS%p%LAI specifies the LAI data source for the run. Acceptable values are:

Value Description
2 AVHRR-based LAI

8.1.2 lis run inputs namelist

In the lis run inputs namelist of the card file these parameters may be reset:

LIS%o%EXPCODE
LIS%p%VCLASS

30

LIS%p%NT
LIS%f%NF
LIS%f%NMIF
LIS%f%ECOR
LIS%o%WFOR
LIS%f%INTERP
LIS%o%WSINGLE
LIS%o%WPARAM
LIS%o%WTIL
LIS%o%WOUT
LIS%o%STARTCODE
LIS%t%SSS
LIS%t%SMN
LIS%t%SHR
LIS%t%SDA
LIS%t%SMO
LIS%t%SYR
LIS%t%ENDCODE
LIS%t%ESS
LIS%t%EMN
LIS%t%EHR
LIS%t%EDA
LIS%t%EMO
LIS%t%EYR
LIS%t%TS
LIS%d%UDEF
LIS%o%ODIR
LIS%o%DFILE
LIS%f%GPCPSRC
LIS%f%RADSRC

LIS%o%EXPCODE specifies the “experiment code number” for the run. It is
used in constructing the name of the output directory for the run. Acceptable
values are any 3 digit integer string from 100 through 999.

LIS%p%VCLASS specifies the type of vegetation classification used. The de-
fault value is 1 corresponding to the UMD classification.

LIS%p%NT specifies the number of vegetation types. The default value is 13
corresponding to the UMD vegetation type classification.

LIS%f%NF specifies the number of forcing variables. LIS currently uses 10
variables to force the LSMs

LIS%f%NMIF specifies the number of forcing variables for model initialization.
The default value is set to 15.

LIS%o%ECOR specifies whether to use elevation correction for forcing.
Acceptable values are:

31

Value Description
0 Do not use elevation correction for forcing
1 Use elevation correction for forcing

LIS%o%WFOR specifies whether to output the ALMA optional forcing vari-
ables. Acceptable values are:

Value Description
0 Do not output forcing variables
1 Do output forcing variables

LIS%f%INTERP specifies the type of interpolation scheme to apply to the
forcing data. Acceptable values are:

Value Description
1 bilinear scheme
2 conservative scheme

LIS%o%WSINGLE specifies whether to write each variable to a separate file or
bundle them together. Acceptable values are:

Value Description
0 Write all output variables to a single file
1 Write each output variable in a separate file

LIS%o%WPARAM specifies whether to write output for parameters such as the
dominant vegetation type, soil type, lai, albedo, gfrac, etc. Acceptable values
are:

Value Description
0 Do not write parameter output
1 Write parameter output

LIS%o%WTIL specifies whether to write output as a 1-D array containing only
land points or as a 2-D array containing both land and water points. Acceptable
values are:

Value Description
0 Write output in a 2-D grid domain
1 Write output in a 1-D grid domain

LIS%o%WOUT specifies the output data format. Acceptable values are:

Value Description
1 Write output in binary format
2 Write output in grib format

LIS%o%STARTCODE specifies if a restart mode is being used. Acceptable values
are:

32

Value Description
1 A restart mode is being used
2 A cold start mode is being used, no restart file read

When the cold start option is specified, the program is initialized using the
LSM-specific initial conditions (typically assumed uniform for all tiles). When a
restart mode is used, it is assumed that a corresponding restart file is provided
depending upon which LSM is used. The user also needs to make sure that the
ending time of the simulation is greater than model time when the restart file
was written. See Sections 8.1.16, 8.1.17, and 8.1.18 to see how to specify the
restart file.

Parameters LIS%t%SSS, LIS%t%SMN, LIS%t%SHR, LIS%t%SDA, LIS%t%SMO, and
LIS%t%SYR are used in constructing the starting time for the run. Acceptable
values are:

Variable Value Description
LIS%t%SSS integer 0 – 59 specifying starting second
LIS%t%SMN integer 0 – 59 specifying starting minute
LIS%t%SHR integer 0 – 23 specifying starting hour
LIS%t%SDA integer 1 – 31 specifying starting day
LIS%t%SMO integer 1 – 12 specifying starting month
LIS%t%SYR integer 2001 – present specifying starting year

LIS%o%ENDCODE specifies the termination condition for runs.
Acceptable values are:

Value Description
0 Terminate the program at real-time date (not currently available)
1 Terminate the program at the specified date

Parameters LIS%t%ESS, LIS%t%EMN, LIS%t%EHR, LIS%t%EDA, LIS%t%EMO, and
LIS%t%EYR are used in constructing the ending time for the run. Acceptable
values are:

Variable Value Description
LIS%t%ESS integer 0 – 59 specifying ending second
LIS%t%EMN integer 0 – 59 specifying ending minute
LIS%t%EHR integer 0 – 23 specifying ending hour
LIS%t%EDA integer 1 – 31 specifying ending day
LIS%t%EMO integer 1 – 12 specifying ending month
LIS%t%EYR integer 2001 – present specifying ending year

LIS%t%TS specifies the time-step for the run. Acceptable values are:

Value Description
900 15 minute time-step
1800 30 minute time-step
3600 60 minute time-step

33

LIS%o%UDEF specifies the undefined value. The default is set to -9999.
LIS%o%ODIR specifies the name of the top-level output directory. Accept-

able values are any 40 character string. The default value of LIS%o%ODIR is
set to OUTPUT. For simplicity, throughout the rest of this document, this
top-level output directory shall be referred to by its default name, $WORK-
ING/LIS/OUTPUT.

LIS%o%DFILE specifies the name of run time diagnostic file. Acceptable val-
ues are any 40 character string.

LIS%f%GPCPSRC specifies if an observed precipitation forcing scheme is used
or not. Acceptable values are:

Value Description
0 No observed precipitation scheme used
1 use NRL precipitation product
2 use HUFFMANN precipitation product
3 use PERSIAN precipitation product
4 use CMAP precipitation product
5 use CMORPH precipitation product

Currently only CMAP precipitation product is implemented in LIS. Other
schemes are under development.

LIS%f%RADSRC specifies if an observed radiation forcing scheme is used or
not. Acceptable values are:

Value Description
0 No observed radiation scheme used
1 use AGRMET radiation product

Parameters LIS%d%MAXT and LIS%d%MINA define the subgrid variability. LIS%d%MAXT
defines the maximum tiles per grid (this can be as many as 13, the number of
land cover types in the UMD vegetation classification). In addition, users select
the smallest percentage of a cell for which to create a tile. LIS%d%MINA defines
this parameter. The percentage value is expressed as a fraction.

8.1.3 run domain namelist

The run domain namelist of the card file specifies the running domain (domain
over which the simulation is carried out). LIS uses an array called run dd that
contains these domain definition parameters.

34

Variable Description
run dd(1) 0 = Equidistant cylindrical
run dd(2) Latitude of the south-west grid-cell center for the

running domain
run dd(3) Longitude of the south-west grid-cell center for the

running domain
run dd(4) Latitude of the north-east grid-cell center for the

running domain
run dd(5) Longitude of the north-east grid-cell center for the

running domain
run dd(6) Latitudinal increment of the running domain
run dd(7) Longitudinal increment of the running domain

See Section 8.2 for an example of how to set these values.

8.1.4 param domain namelist

Currently it is assumed that all the parameter data are defined on the same
domain, and that this domain contains the running domain described above.

Note: Several types of parameter data now have their own grid definitions.
These are described in following sections.

The param domain namelist of the card file specifies the parameter domain.
LIS uses an array called param dd that contains these domain definition param-
eters.

Variable Description
param dd(1) Latitude of the south-west grid-cell center for the

parameter data domain
param dd(2) Longitude of the south-west grid-cell center for the

parameter data domain
param dd(3) Latitude of the north-east grid-cell center for the

parameter data domain
param dd(4) Longitude of the north-east grid-cell center for the

parameter data domain
param dd(5) Latitudinal increment of the parameter data domain
param dd(6) Longitudinal increment of the parameter data domain

See Section 8.2 for an example of how to set these values.

8.1.5 landcover namelist

The landcover namelist of the card file specifies the land/sea mask and vege-
tation classification data. See Section 6 for instructions on how to obtain these
parameter data-sets.

LIS%p%MFILE
LIS%p%VFILE
LIS%d%lc_gridDesc(1)

35

LIS%d%lc_gridDesc(2)
LIS%d%lc_gridDesc(3)
LIS%d%lc_gridDesc(4)
LIS%d%lc_gridDesc(5)
LIS%d%lc_gridDesc(6)

LIS%p%MFILE specifies the location of land/water mask file.
LIS%p%VFILE specifies the location of the vegetation classification file.
The LIS%d%lc gridDesc defines the grid these data are on. Each element

is defined similarly to its corresponding element in the param dd array. See
Section 8.1.4.

8.1.6 elevation namelist

The elevation namelist of the card file specifies the elevation correction data.
See Section 6 for instructions on how to obtain these parameter data-sets.

LIS%p%ELEVFILE
LIS%d%elev_gridDesc(1)
LIS%d%elev_gridDesc(2)
LIS%d%elev_gridDesc(3)
LIS%d%elev_gridDesc(4)
LIS%d%elev_gridDesc(5)
LIS%d%elev_gridDesc(6)

LIS%p%ELEVFILE specifies the elevation difference between LIS and EDAS
(Eta Data Assimilation System) model grids.

The LIS%d%elev gridDesc defines the grid these data are on. Each element
is defined similarly to its corresponding element in the param dd array. See
Section 8.1.4.

8.1.7 soils namelist

The soils namelist of the card file specifies the soil classification data. See
Section 6 for instructions on how to obtain these parameter data-sets.

LIS%p%SAFILE
LIS%p%CLFILE
LIS%p%ISCFILE
LIS%p%PO1FILE
LIS%p%PO2FILE
LIS%p%PO3FILE
LIS%p%SIFILE
LIS%p%SLFILE
LIS%d%soil_gridDesc(1)
LIS%d%soil_gridDesc(2)
LIS%d%soil_gridDesc(3)

36

LIS%d%soil_gridDesc(4)
LIS%d%soil_gridDesc(5)
LIS%d%soil_gridDesc(6)

LIS%p%SAFILE specifies the sand fraction map file.
LIS%p%CLFILE specifies the clay fraction map file.
LIS%p%ISCFILE specifies the soil color map file.
LIS%p%PO1FILE specifies top-layer porosity.
LIS%p%PO2FILE specifies mid-layer porosity.
LIS%p%PO3FILE specifies bottom-layer porosity.
LIS%p%SIFILE specifiles the silt map file.
LIS%p%SLFILE specifiles the slope map file.
The LIS%d%soil gridDesc defines the grid these data are on. Each element

is defined similarly to its corresponding element in the param dd array. See
Section 8.1.4.

8.1.8 lai namelist

The lai namelist of the card file specifies the Leaf/Stem Area Index data. See
Section 6 for instructions on how to obtain these parameter data-sets.

LIS%p%AVHRRDIR
LIS%p%MODISDIR

LIS%p%AVHRRDIR and LIS%p%MODISDIR specifies the source for reading in
LAI/SAI data (real time monthly data or climatology) for AVHRR and MODIS
data, respectively. Once the source directory is specified, the program looks for
real time data. If the real time data is not available, climatology data is read
in.

8.1.9 geos namelist

The geos namelist of the card file specifies the GEOS base forcing data. See
Section 6 for instructions on how to obtain these forcing data-sets.

geosdrv%GEOSDIR
geosdrv%NROLD
geosdrv%NCOLD
geosdrv%NMIF

geosdrv%GEOSDIR specifies the location of the GEOS forcing files.
geosdrv%NCOLD and geosdrv%NROLD specify the native domain parameters

of the GEOS forcing data. The map projection is specified in the driver modules
defined for the GEOS routines.

geosdrv%NMIF specifies the number of forcing variables provided by GEOS
at the model initialization step.

37

8.1.10 gdas namelist

The gdas namelist of the card file specifies the GDAS base forcing data. See
Section 6 for instructions on how to obtain these forcing data-sets.

gdasdrv%GDASDIR
gdasdrv%NROLD
gdasdrv%NCOLD
gdasdrv%NMIF

gdasdrv%GDASDIR specifies the location of the GDAS forcing files.
gdasdrv%NCOLD and gdasdrv%NROLD specify the native domain parameters

of the GDAS forcing data. The map projection is specified in the driver modules
defined for the GDAS routines.

gdasdrv%NMIF specifies the number of forcing variables provided by GDAS
at the model initialization step.

8.1.11 nldas namelist

The nldas namelist of the card file specifies the NLDAS base forcing data.

nldasdrv%NLDASDIR
nldasdrv%NROLD
nldasdrv%NCOLD

nldasdrv%NLDASDIR specifies the location of the NLDAS forcing files.
nldasdrv%NCOLD and nldasdrv%NROLD specify the native domain parame-

ters of the NLDAS forcing data. The map projection is specified in the driver
modules defined for the NLDAS routines.

8.1.12 ecmwf namelist

The ecmwf namelist of the card file specifies the ECMWF base forcing data.

ecmwfdrv%ECMWFDIR
ecmwfdrv%NROLD
ecmwfdrv%NCOLD
ecmwfdrv%NMIF

ecmwfdrv%ECMWFDIR specifies the location of the ECMWF forcing files.
ecmwfdrv%NCOLD and ecmwfdrv%NROLD specify the native domain parameters

of the ECMWF forcing data. The map projection is specified in the driver
modules defined for the ECMWF routines.

ecmwfdrv%NMIF specifies the number of forcing variables provided by ECMWF
at the model initialization step.

38

8.1.13 berg namelist

The berg namelist of the card file specifies the ECMWF reanalysis base forcing
data.

bergdrv%emaskfile
bergdrv%nrold
bergdrv%ncold

bergdrv%emaskfile specifies the location of the ECMWF reanalysis land/sea
mask file.

bergdrv%ncold and bergdrv%nrold specify the native domain parameters
of the ECMWF reanalysis forcing data. The map projection is specified in the
driver modules defined for the berg routines.

8.1.14 cmap namelist

The cmap namelist of the card file specifies the CMAP precipitation data. See
Section 6 for instructions on how to obtain these forcing data-sets.

cmapdrv%CMAPDIR
cmapdrv%NROLD
cmapdrv%NCOLD

cmapdrv%CMAPDIR specifies the location of the CMAP forcing files.
cmapdrv%NCOLD and cmapdrv%NROLD specifies the native domain parameters

of the CMAP forcing data. The map projection is specified in the driver modules
defined for the CMAP routines.

8.1.15 agrmet namelist

The agrmet namelist of the card file specifies the AGRMET radiation data. See
Section 6 for instructions on how to obtain these forcing data-sets.

agrmetdrv%AGRMETDIR

agrmetdrv%AGRMETDIR specifies the location of the AGRMET forcing files.

8.1.16 clm2 namelist

The clm2 namelist of the card file specifies the run-time options and data specific
to the CLM2 land surface model. See Section 6 for instructions on how to obtain
these parameter data-sets.

clmdrv%WRITEINTC2
clmdrv%CLM2_RFILE
clmdrv%CLM2_VFILE
clmdrv%CLM2_CHTFILE
clmdrv%CLM2_ISM
clmdrv%CLM2_IT
clmdrv%CLM2_ISCV

39

clmdrv%WRITEINTC2 defines the output interval for CLM. Acceptable values
range from 1 to 24 hours. The typical value used in the LIS runs is 3 hours.

clmdrv%CLM2 RFILE specifies the CLM active restart file.
clmdrv%CLM2 VFILE specifies vegetation type parameters look-up table.
clmdrv%CLM2 CHTFILE specifies the canopy top and bottom heights (for each

vegetation type) look-up table.
clmdrv%CLM2 ISM specifies the initial soil moisture used in the cold start

runs.
clmdrv%CLM2 ISCV specifies the initial snow mass used in the cold start runs.

8.1.17 noah namelist

The noah namelist of the card file specifies the run-time options and data specific
to the Noah land surface model. See Section 6 for instructions on how to obtain
these parameter data-sets.

noahdrv%WRITEINTN
noahdrv%NOAH_RFILE
noahdrv%NOAH_MGFILE
noahdrv%NOAH_ALBFILE
noahdrv%NOAH_VFILE
noahdrv%NOAH_SFILE
noahdrv%NOAH_MXSNAL
noahdrv%NOAH_TBOT
noahdrv%NOAH_ISM
noahdrv%NOAH_IT
noahdrv%NOAH_NVEGP
noahdrv%NOAH_NSOILP

noahdrv%WRITEINTN defines the output interval for Noah. Acceptable values
range from 1 to 24 hours. The typical value used in the LIS runs is 3 hours.

noahdrv%NOAH RFILE specifies the Noah active restart file.
In the noah namelist of the card file these parameters must correspond with

the domain resolution set in the param domain namelist:

noahdrv%NOAH_MGFILE
noahdrv%NOAH_ALBFILE

noahdrv%NOAH MGFILE and noahdrv%NOAH ALBFILE specify where to find
Noah’s monthly greenness fraction and quarterly albedo input parameter data
files.

noahdrv%NOAH VFILE specifies the Noah static vegetation parameter file.
noahdrv%NOAH SFILE specifies the Noah soil parameter file.
noahdrv%NOAH MXSNAL specifies the Noah max snow free albedo.
noahdrv%NOAH TBOT specifies the Noah bottom temperature.
noahdrv%NOAH ISM specifies the initial soil moisture used in the cold start

runs.

40

noahdrv%NOAH IT specifies the initial skin temperature used in the cold start
runs.

noahdrv%NOAH NVEGP specifies the number of static vegetation parameters
specified for each veg type.

noahdrv%NOAH NSOILP specifies the number of static soil parameters speci-
fied.

8.1.18 vic namelist

The vic namelist of the card file specifies the run-time options and data specific
to the VIC land surface model. See Section 6 for instructions on how to obtain
these parameter data-sets.

vicdrv%WRITEINTVIC
vicdrv%VIC_NLAYER
vicdrv%VIC_NNODE
vicdrv%VIC_SNOWBAND
vicdrv%VIC_ROOTZONES
vicdrv%vic_frozen_soil
vicdrv%VIC_SFILE
vicdrv%VIC_VEGLIBFILE
vicdrv%VIC_RFILE
vicdrv%VIC_DSMAPFILE
vicdrv%VIC_DSMAXMAPFILE
vicdrv%VIC_WSMAPFILE
vicdrv%VIC_INFILTMAPFILE
vicdrv%VIC_DEPTH1MAPFILE
vicdrv%VIC_DEPTH2MAPFILE
vicdrv%VIC_DEPTH3MAPFILE
vicdrv%vic_initial_surf_temp

vicdrv%WRITEINTV defines the output interval for VIC. Acceptable values
range from 1 to 24 hours. The typical value used in LIS runs is 3 hours.

vicdrv%VIC NLAYER specifies the number of soil layers in VIC.
vicdrv%VIC NNODE specifies the number of soil thermal nodes in VIC.
vicdrv%VIC SNOWBAND specifies the number of snow bands in VIC.
vicdrv%VIC ROOTZONES specifies the number of root zones in VIC.
vicdrv%vic frozen soil boolean flag (0/1) that specifies whether or not

to perform the “frozen soil” calculations.
vicdrv%VIC SFILE specifies the VIC soil parameter file.
vicdrv%VIC VEGLIBFILE specifies the VIC vegetation parameter file.
vicdrv%VIC RFILE specifies the active restart file.
vicdrv%VIC DSMAPFILE specifies fraction of maximum subsurface flow rate.
vicdrv%VIC DSMAXMAPFILE specifies maximum subsurface flow rate.
vicdrv%VIC WSMAPFILE specifies fraction of maximum soil moisture.
vicdrv%VIC INFILTMAPFILE specifies infiltration.

41

vicdrv%VIC DEPTH1MAPFILE specifies layer 1 soil depth.
vicdrv%VIC DEPTH2MAPFILE specifies layer 2 soil depth.
vicdrv%VIC DEPTH3MAPFILE specifies layer 3 soil depth.
vicdrv%vic initial surf temp specifies the initial surface temperature in

cold start runs.

8.1.19 opendap namelist

opendap data prefix specifies the top level directory where the GDS data re-
trieving script, getdata.pl, will place the data-sets it transfers.

In addition to modifying the lis.crd file by hand, you may use LIS’ card file
generator to write a cardfile for you. To use the card file generator

1. Go to LIS’ “Public Release Home Page”

Go to http://lis.gsfc.nasa.gov/

Follow the “Source Codes” link.

Follow the “LIS 4.0 Code Release” link.

2. From LIS’ “Public Release Home Page”

Follow the “LIS card file generator” link.

3. Fill in the blanks

4. Use your browser’s “save as” feature to save a copy of the card file

5. Copy the card file to $WORKING/LIS/lis.crd

8.2 Domain Example

This section describes how to compute the values for the run dd and param dd
arrays.

First, we shall generate the values for the parameter data domain. These
are the values for the param dd array. LIS’ parameter data is defined on a
Latitude/Longitude grid, from −180 to 180 degrees longitude and from −60 to
90 degrees latitude.

For this example, consider running at 1/4 deg resolution. The coordinates
of the south-west and the north-east points are specified at the grid-cells’ centers.
Here the south-west grid-cell is given by the box (−180,−60), (−179.750,−59.750).
The center of this box is (−179.875,−59.875). 2

param_dd(1) = -59.875
param_dd(2) = -179.875

The north-east grid-cell is given by the box (179.750, 89.750), (180, 90). Its
center is (179.875, 89.875).

2Note, these coordinates are ordered (longitude, latitude).

42

http://lis.gsfc.nasa.gov/

param_dd(3) = 89.875
param_dd(4) = 179.875

Setting the resolution (0.25 deg) gives

param_dd(5) = 0.25
param_dd(6) = 0.25

And this completely defines the parameter data domain.
Next, we shall generate the values for the running domain. These are the

values for the run dd array.
Since the parameter data is on a Latitude/Longitude grid, we set

run_dd(1) = 0

If you wish to run over the whole domain defined by the parameter data
domain then you simply set the values of dd(2) – dd(7) equal to the values
given by dd(8) – dd(13). This gives

run_dd(2) = -59.875
run_dd(3) = -179.875
run_dd(4) = 89.875
run_dd(5) = 179.875
run_dd(6) = 0.25
run_dd(7) = 0.25

Now say you wish to run only over the region given by (−97.6, 27.9), (−92.9, 31.9).
Since the running domain is a sub-set of the parameter domain, it is also a Lat-
itude/Longitude domain at 1/4 deg. resolution. Thus,

run_dd(6) = 0.25
run_dd(7) = 0.25

Now, since the running domain must fit onto the parameter domain, the
desired running region must be expanded from (−97.6, 27.9), (−92.9, 31.9) to
(−97.75, 27.75), (−92.75, 32.0). The south-west grid-cell for the running domain
is the box (−97.75, 27.75), (−97.5, 28.0). Its center is (−97.625, 27.875); giving

run_dd(2) = 27.875
run_dd(3) = -97.625

The north-east grid-cell for the running domain is the box (−93, 31.75), (−92.75, 32.0).
Its center is (−92.875, 31.875); giving

run_dd(4) = 31.875
run_dd(5) = -92.875

This completely defines the running domain.
Note, the LIS project has defined 5 km resolution to be 0.05 deg. and 1 km

resolution to be 0.01 deg. If you wish to run at 5 km or 1 km resolution, redo
the above example to compute the appropriate grid-cell values.

See Figure 2 for an illustration of adjusting the running grid. See Figures 3
and 4 for an illustration of the south-west and north-east grid-cells.

43

Figure 2: Illustration showing how to fit the desired running grid onto the actual
grid

44

Figure 3: Illustration showing the south-west grid-cell corresponding to the
example in Section 8.2

45

Figure 4: Illustration showing the north-east grid-cell corresponding to the ex-
ample in Section 8.2

46

8.3 Running Over The 1 km Domain

Note, these instructions are specific to LIS’ Linux cluster.
To run LIS over the global 1 km domain, you must use the special “1 km”

scripts.
Before running the scripts you must edit the farmer.conf configuration file

found in /data1/pool/control. The variables to set are:

cardfile
lsm
exp

cardfile specifies the full path to the lis.crd card file.
lsm specifies the land surface model being run. Acceptable values are:

NOAH
CLM2
VIC

exp is a label used to distinguish the simulation. It is used to construct
a “snap-shot” directory. This “snap-shot” directory contains information that
records which sub-domain patches each compute node processes. This informa-
tion is used to assemble the output.

After editting the farmer.conf, you then run the create-bones.pl and start-
farmer-dogs.pl Perl scripts, which are also in /data1/pool/control.

% cd /data1/pool/control
% ./create-bones.pl
% ./start-farmer-dogs.pl

create-bones.pl constructs the “pool” of sub-domains to process. start-farmer-
dogs.pl starts the simulation.

47

9 Output Data Processing

This section describes how to process the generated output.
The output data-sets created by running the LIS executable are written

into sub-directories of the $WORKING/LIS/OUTPUT/ directory (created at
run-time). These sub-directories are named EXP999 (by default).

The output data consists of ASCII text files and model output in binary
format.

For example, assume that you performed a “1/4 deg Noah with GEOS forc-
ing” simulation for 11 June 2001, with an experiment code value of 999, and
writing output as a 2-D array.

This run will produce a $WORKING/LIS/OUTPUT/EXP999/ directory.
This directory will contain:

File Name Synopsis
Noahstats.dat Statistical summary of output
NOAH Directory containing output data

The NOAH directory will contain sub-directories of the form YYYY/YYYYMMDD,
where YYYY is a 4-digit year and YYYYMMDD is a date written as a 4-digit
year, 2-digit month and a 2-digit day; both corresponding to the runnnig dates
of the simulation.

For this example, NOAH will contain a 2001/20010611 sub-directory.
Its contents are the output files generated by the executable. They are:

2001061100.gs4r

2001061103.gs4r

2001061106.gs4r

2001061109.gs4r

2001061112.gs4r

2001061115.gs4r

2001061118.gs4r

2001061121.gs4r

Note, each file-name contains a date-stamp marking the year, month, day,
and hour that the data corresponds to. The output data files for CLM and VIC
are similar.

The generated output can be written in a 2-D grid format or as a 1-d vector.
See Section 8.1.2 for more details. If written as a 1-d vector, the output must
be converted into a 2-d grid before it can be visualized. The postproc.tar.gz

48

contains 1-d to 2-d mapping files that GrADS can use for this purpose. 3 See
Section 5.4.

In this example, for 2-D output, simply copy the noah.25.ctl and noah.25.gs
files into the $WORKING/LIS/OUTPUT/EXP999/NOAH/2001/20010611 di-
rectory. Then run GrADS:

% grads -blc "run noah.25.gs"

This will create data-plots of all the variables in 2001061121.gs4r.
For 1-D output, you must edit the noah.25.ctl data descriptor file. Simply

uncomment (remove the asterisk) the “PDEF” line. Then run GrADS as above.

3These mappings only work for “global” runs. If your simulation was over a sub-setted
domain, you must either create your own pdef mapping file or simply write 2-d output.

49

9.1 CLM Output

This table lists the variables written by CLM. The output variables are writ-
ten to conform to the standards specified by the Assistance for Land-surface
Modelling activities (ALMA). See ALMA’s web-site [3] for futher details.

ALMA Mandatory Output

Number Variable Description Units

1 SWnet Net Shortwave Radiation W/m2

2 LWnet Net Longwave Radiation W/m2

3 Qle Latent Heat Flux W/m2

4 Qh Sensible Heat Flux W/m2

5 Qg Ground Heat Flux W/m2

6 Snowf Snowfall rate kg/m2/s

7 Rainf Rainfall rate kg/m2/s

8 Evap Total Evapotranspiration kg/m2/s

9 Qs Surface Runoff kg/m2/s

10 Qsb Subsurface Runoff kg/m2/s

11 Qsm Snowmelt kg/m2/s

12 DelSoilMoist Change in soil moisture kg/m2

13 DelSWE Change in snow water equivalent kg/m2

14 SnowT Snow Temperature K

15 VegT Vegetation Canopy Temperature K

16 BaresoilT Temperature of bare soil K

17 AvgSurfT Average Surface Temperature K

18 RadT Surface Radiative Temperature K

19 Albedo Surface Albedo, All Wavelengths -

20 SWE Snow Water Equivalent kg/m2

50

Number Variable Description Units

21 SoilTemp1 Average layer 1 soil temperature K

22 SoilTemp2 Average layer 2 soil temperature K

23 SoilTemp3 Average layer 3 soil temperature K

24 SoilTemp4 Average layer 4 soil temperature K

25 SoilTemp5 Average layer 5 soil temperature K

26 SoilTemp6 Average layer 6 soil temperature K

27 SoilTemp7 Average layer 7 soil temperature K

28 SoilTemp8 Average layer 8 soil temperature K

29 SoilTemp9 Average layer 9 soil temperature K

30 SoilTemp10 Average layer 10 soil temperature K

31 SoilMoist1 Average layer 1 soil moisture kg/m2

32 SoilMoist2 Average layer 2 soil moisture kg/m2

33 SoilMoist3 Average layer 3 soil moisture kg/m2

34 SoilMoist4 Average layer 4 soil moisture kg/m2

35 SoilMoist5 Average layer 5 soil moisture kg/m2

36 SoilMoist6 Average layer 6 soil moisture kg/m2

37 SoilMoist7 Average layer 7 soil moisture kg/m2

38 SoilMoist8 Average layer 8 soil moisture kg/m2

39 SoilMoist9 Average layer 9 soil moisture kg/m2

40 SoilMoist10 Average layer 10 soil moisture kg/m2

41 RootMoist Root zone soil moisture kg/m2

42 SoilWet Total Soil Wetness -

43 TVeg Vegetation transpiration kg/m2/s

44 ECanop Interception evaporation kg/m2/s

45 ESoil Bare soil evaporation kg/m2/s

46 Canopint Total canopy water storage kg/m2

47 ACond Aerodynamic conductance m/s

51

ALMA Optional Forcing Output

Number Variable Description Units

48 Wind Near surface wind magnitude m/s

49 Rainf Rainfall rate kg/m2/s

50 Snowf Snowfall rate kg/m2/s

51 Tair Near surface air temperature K

52 Qair Near surface specific humidity kg/kg

53 PSurf Surface pressure Pa

54 SWdown Surface incident shortwave radiation W/m2

55 LWdown Surface incident longwave radiation W/m2

52

9.2 Noah Output

This table lists the variables written by Noah. The output variables are writ-
ten to conform to the standards specified by the Assistance for Land-surface
Modelling activities (ALMA). See ALMA’s web-site [3] for futher details.

ALMA Mandatory Output

Number Variable Description Units

1 SWnet Net Shortwave Radiation W/m2

2 LWnet Net Longwave Radiation W/m2

3 Qle Latent Heat Flux W/m2

4 Qh Sensible Heat Flux W/m2

5 Qg Ground Heat Flux W/m2

6 Snowf Snowfall rate kg/m2/s

7 Rainf Rainfall rate kg/m2/s

8 Evap Total Evapotranspiration kg/m2/s

9 Qs Surface Runoff kg/m2/s

10 Qsb Subsurface Runoff kg/m2/s

11 Qsm Snowmelt kg/m2/s

12 DelSoilMoist Change in soil moisture kg/m2

13 DelSWE Change in snow water equivalent kg/m2

14 AvgSurfT Average Surface Temperature K

15 Albedo Surface Albedo, All Wavelengths -

16 SWE Snow Water Equivalent kg/m2

17 SoilTemp1 Average layer 1 soil temperature K

18 SoilTemp2 Average layer 2 soil temperature K

19 SoilTemp3 Average layer 3 soil temperature K

20 SoilTemp4 Average layer 4 soil temperature K

21 SoilMoist1 Average layer 1 soil moisture kg/m2

22 SoilMoist2 Average layer 2 soil moisture kg/m2

23 SoilMoist3 Average layer 3 soil moisture kg/m2

24 SoilMoist4 Average layer 4 soil moisture kg/m2

25 SoilWet Total Soil Wetness -

53

26 ECanop Interception evaporation kg/m2/s

27 TVeg Vegetation transpiration kg/m2/s

28 ESoil Bare soil evaporation kg/m2/s

29 RootMoist Root zone soil moisture kg/m2

30 Canopint Total canopy water storage kg/m2

ALMA Optional Forcing Output

Number Variable Description Units

31 Wind Near surface wind magnitude m/s

32 Rainf Rainfall rate kg/m2/s

33 Snowf Snowfall rate kg/m2/s

34 Tair Near surface air temperature K

35 Qair Near surface specific humidity kg/kg

36 PSurf Surface pressure Pa

37 SWdown Surface incident shortwave radiation W/m2

38 LWdown Surface incident longwave radiation W/m2

54

9.3 VIC Output

This table lists the variables written by VIC. The output variables are written to
conform to the standards specified by the Assistance for Land-surface Modelling
activities (ALMA). See ALMA’s web-site [3] for futher details.

ALMA Mandatory Output

Number Variable Description Units

1 SWnet Net Shortwave Radiation W/m2

2 LWnet Net Longwave Radiation W/m2

3 Qle Latent Heat Flux W/m2

4 Qh Sensible Heat Flux W/m2

5 Qg Ground Heat Flux W/m2

6 Rainf Rainfall rate kg/m2/s

7 Snowf Snowfall rate kg/m2/s

8 Evap Total Evapotranspiration kg/m2/s

9 Qs Surface Runoff kg/m2/s

10 Qsb Subsurface Runoff kg/m2/s

11 Qfz Re-freezing of water in the snow kg/m2/s

12 SnowT Snow Temperature K

13 AvgSurfT Average Surface Temperature K

14 RadT Surface Radiative Temperature K

15 Albedo Surface Albedo, All Wavelengths -

16 SoilTemp Average layer 1 soil temperature kg/m2

17 SoilTemp Average layer 2 soil temperature kg/m2

18 SoilTemp Average layer 3 soil temperature kg/m2

19 SoilMoist Average layer 1 soil moisture kg/m2

20 SoilMoist Average layer 2 soil moisture kg/m2

21 SoilMoist Average layer 3 soil moisture kg/m2

22 TVeg Vegetation transpiration kg/m2/s

23 ESoil Bare soil evaporation kg/m2/s

24 SoilWet Total Soil Wetness -

25 RootMoist Root zone soil moisture kg/m2

55

26 SWE Snow Water Equivalent kg/m2

27 Qsm Snowmelt kg/m2/s

28 DelSoilMoist Change in soil moisture kg/m2

29 DelSWE Change in snow water equivalent kg/m2

30 ACond Aerodynamic conductance m/s

ALMA Optional Forcing Output

Number Variable Description Units

31 Wind Near surface wind magnitude m/s

32 Rainf Rainfall rate kg/m2/s

33 Snowf Snowfall rate kg/m2/s

34 Tair Near surface air temperature K

35 Qair Near surface specific humidity kg/kg

36 PSurf Surface pressure Pa

37 SWdown Surface incident shortwave radiation W/m2

38 LWdown Surface incident longwave radiation W/m2

56

A LIS Card File

This is a sample LIS card file. This card file configures LIS to run the Noah
land surface model at 1/4 degree resolution using GEOS forcing data. The
run starts at 21 hours 10 June 2001 and ends at 21 hours 11 June 2001. It
will compute over the region given by the box (−97.75, 27.75), (−92.75, 32.0)
degrees longitude/latitude.

&driver
LIS%d%DOMAIN = 1
LIS%d%LSM = 1
LIS%f%FORCE = 2
LIS%d%LANDCOVER = 1
LIS%d%SOIL = 2
LIS%d%ELEV = 1
LIS%p%LAI = 2
/

&lis_run_inputs
LIS%o%EXPCODE = 999
LIS%p%VCLASS = 1
LIS%p%NT = 13
LIS%f%NF = 10
LIS%f%NMIF = 15
LIS%f%ECOR = 1
LIS%o%WFOR = 1
LIS%f%INTERP = 1
LIS%o%WSINGLE = 0
LIS%o%WPARAM = 0
LIS%o%WTIL = 0
LIS%o%WOUT = 1
LIS%o%STARTCODE = 2
LIS%t%SSS = 0
LIS%t%SMN = 00
LIS%t%SHR = 21
LIS%t%SDA = 10
LIS%t%SMO = 06
LIS%t%SYR = 2001
LIS%t%ENDCODE = 1
LIS%t%ESS = 0
LIS%t%EMN = 00
LIS%t%EHR = 21
LIS%t%EDA = 11
LIS%t%EMO = 06
LIS%t%EYR = 2001

57

LIS%t%TS = 1800
LIS%d%UDEF = -9999.
LIS%o%ODIR = "OUTPUT"
LIS%o%DFILE = "lisdiag"
LIS%f%GPCPSRC = 0
LIS%f%RADSRC = 0
LIS%d%MAXT = 1
LIS%d%MINA = 0.05
/

&run_domain
run_dd(1) = 0
run_dd(2) = 27.875
run_dd(3) = -97.625
run_dd(4) = 31.875
run_dd(5) = -92.875
run_dd(6) = 0.25
run_dd(7) = 0.25
/

¶m_domain
param_dd(1) = -59.875
param_dd(2) = -179.875
param_dd(3) = 89.875
param_dd(4) = 179.875
param_dd(5) = 0.25
param_dd(6) = 0.25
/

&landcover
LIS%p%MFILE = "input/GVEG/1_4deg/UMD_AVHRR60mask0.25.bfsa"
LIS%p%VFILE = "input/GVEG/1_4deg/UMD_AVHRR60G0.25.bfsa"
LIS%d%lc_gridDesc(1) = -59.875
LIS%d%lc_gridDesc(2) = -179.875
LIS%d%lc_gridDesc(3) = 89.875
LIS%d%lc_gridDesc(4) = 179.875
LIS%d%lc_gridDesc(5) = 0.25
LIS%d%lc_gridDesc(6) = 0.25
/

&elevation
LIS%p%ELEVFILE = "GVEG/1_4deg/geos3_diff.1gd4r"
LIS%d%elev_gridDesc(1) = -59.875
LIS%d%elev_gridDesc(2) = -179.875
LIS%d%elev_gridDesc(3) = 89.875
LIS%d%elev_gridDesc(4) = 179.875

58

LIS%d%elev_gridDesc(5) = 0.25
LIS%d%elev_gridDesc(6) = 0.25
/

&soils
LIS%p%SAFILE = "input/BCS/1_4deg/sandfao.1gd4r"
LIS%p%CLFILE = "input/BCS/1_4deg/clayfao.1gd4r"
LIS%p%ISCFILE = "input/BCS/1_4deg/soicolfao.1gd4r"
LIS%p%PO1FILE = "input/BCS/1_4deg/porfaot.1gd4r"
LIS%p%PO2FILE = "input/BCS/1_4deg/porfaom.1gd4r"
LIS%p%PO3FILE = "input/BCS/1_4deg/porfaob.1gd4r"
LIS%p%SIFILE = "input/BCS/1_4deg/siltfao.1gd4r"
LIS%p%SLFILE = "input/BCS/1_4deg/slope.1gd4r"
LIS%d%soil_gridDesc(1) = -59.875
LIS%d%soil_gridDesc(2) = -179.875
LIS%d%soil_gridDesc(3) = 89.875
LIS%d%soil_gridDesc(4) = 179.875
LIS%d%soil_gridDesc(5) = 0.25
LIS%d%soil_gridDesc(6) = 0.25
/

&lai
LIS%p%AVHRRDIR = "input/AVHRR_LAI/1_4deg"
LIS%p%MODISDIR = "input/MODIS_LAI/1_4deg"
/

&geos
geosdrv%GEOSDIR = "input/FORCING/GEOS/BEST_LK"
geosdrv%NROLD = 181
geosdrv%NCOLD = 360
geosdrv%NMIF = 13
/

&gdas
gdasdrv%GDASDIR = "input/FORCING/GDAS"
gdasdrv%NROLD = 256
gdasdrv%NCOLD = 512
gdasdrv%NMIF = 15
/

&nldas
nldasdrv%NLDASDIR = "input/FORCING/NLDAS"
nldasdrv%NROLD = 224
nldasdrv%NCOLD = 464
/

59

&ecmwf
ecmwfdrv%ECMWFDIR = "input/FORCING/ECMWF"
ecmwfdrv%NROLD = 601
ecmwfdrv%NCOLD = 1440
ecmwfdrv%NMIF = 13
/

&berg
bergdrv%emaskfile = "input/BCS/ecmwf_land_sea.05"
bergdrv%nrold = 360
bergdrv%ncold = 720
/

&cmap
cmapdrv%CMAPDIR = "input/FORCING/CMAP"
cmapdrv%NROLD = 256
cmapdrv%NCOLD = 512
/

&agrmet
agrmetdrv%AGRMETDIR = "input/FORCING/AGRMET"
/

&template
templatedrv%WRITEINT = 3
/

&clm2
clmdrv%WRITEINTC2 = 3
clmdrv%CLM2_RFILE = "clm2.rst"
clmdrv%CLM2_VFILE = "input/BCS/clm_parms/umdvegparam.txt"
clmdrv%CLM2_CHTFILE = "input/BCS/clm_parms/clm2_ptcanhts.txt"
clmdrv%CLM2_ISM = 0.45
clmdrv%CLM2_IT = 290.0
clmdrv%CLM2_ISCV = 0.
/

&noah
noahdrv%WRITEINTN = 3
noahdrv%NOAH_RFILE = "noah.rst"
noahdrv%NOAH_MGFILE = "input/BCS/1_4deg/NOAH/"
noahdrv%NOAH_ALBFILE = "input/BCS/1_4deg/NOAH/"
noahdrv%NOAH_VFILE = "BCS/noah_parms/noah.vegparms.txt"
noahdrv%NOAH_SFILE = "BCS/noah_parms/noah.soilparms.txt"
noahdrv%NOAH_MXSNAL = "input/BCS/1_4deg/NOAH/maxsnalb.1gd4r"
noahdrv%NOAH_TBOT = "input/BCS/1_4deg/NOAH/tbot.1gd4r"

60

noahdrv%NOAH_ISM = 0.30
noahdrv%NOAH_IT = 290.0
noahdrv%NOAH_NVEGP = 7
noahdrv%NOAH_NSOILP = 10
/

&vic
vicdrv%WRITEINTVIC = 3
vicdrv%VIC_NLAYER = 3
vicdrv%VIC_NNODE = 5
vicdrv%VIC_SNOWBAND = 1
vicdrv%VIC_ROOTZONES = 2
vicdrv%vic_frozen_soil = 1
vicdrv%VIC_SFILE = "input/BCS/vic_parms/soil.txt"
vicdrv%VIC_VEGLIBFILE = "input/BCS/vic_parms/veg_lib.txt"
vicdrv%VIC_RFILE = "restart.dat"
vicdrv%VIC_DSMAPFILE = "input/BCS/1_4deg/VIC/ds.1gd4r"
vicdrv%VIC_DSMAXMAPFILE = "input/BCS/1_4deg/VIC/dsmax.1gd4r"
vicdrv%VIC_WSMAPFILE = "input/BCS/1_4deg/VIC/ws.1gd4r"
vicdrv%VIC_INFILTMAPFILE = "input/BCS/1_4deg/VIC/infilt.1gd4r"
vicdrv%VIC_DEPTH1MAPFILE = "input/BCS/1_4deg/VIC/depth1.1gd4r"
vicdrv%VIC_DEPTH2MAPFILE = "input/BCS/1_4deg/VIC/depth2.1gd4r"
vicdrv%VIC_DEPTH3MAPFILE = "input/BCS/1_4deg/VIC/depth3.1gd4r"
vicdrv%vic_initial_surf_temp = 290.0
/

&mos
mosdrv%WRITEINTM = 3
mosdrv%MOS_RFILE = "mos.rst"
mosdrv%MOS_VFILE = "input/BCS/mos_parms/real.vegiparms.txt"
mosdrv%MOS_MVFILE = "input/BCS/mos_parms/real.monvegpar.txt"
mosdrv%MOS_SFILE = "input/BCS/mos_parms/real.soilparms.txt"
mosdrv%MOS_KVFILE = "input/BCS/mos_parms/real.vegiparms.randy.txt"
mosdrv%MOS_KMVFILE = "input/BCS/mos_parms/real.monvegpar.randy.txt"
mosdrv%MOS_KSFILE = "input/BCS/mos_parms/real.soilparms.randy.txt"
mosdrv%MOS_ISM = 0.3
mosdrv%MOS_IT = 290.0
mosdrv%MOS_IC = 1
mosdrv%MOS_SMDA = 0
mosdrv%MOS_TDA = 0
mosdrv%MOS_SDA = 0
mosdrv%MOS_NVEGP = 24
mosdrv%MOS_NMVEGP = 6
mosdrv%MOS_NSOILP = 10
/

61

&hyssib
hyssibdrv%WRITEINT = 3
hyssibdrv%STATEVAR_AVG = 1
hyssibdrv%HYSSIB_RFILE = "hyssib.rst"
hyssibdrv%HYSSIB_ALBFILE = "input/BCS/1deg/HYSSIB/"
hyssibdrv%HYSSIB_GALBRES = "1.0"
hyssibdrv%HYSSIB_AFILE = "input/BCS/hyssib_parms/ssibalb"
hyssibdrv%HYSSIB_VFILE = "input/BCS/hyssib_parms/ssibveg"
hyssibdrv%HYSSIB_TBOT = "input/BCS/1deg/HYSSIB/tbot_1.0.bfsa"
hyssibdrv%HYSSIB_TOPOSTD = "input/BCS/1deg/HYSSIB/topostd_1.0.bfsa"
hyssibdrv%HYSSIB_ISM = 0.30
hyssibdrv%HYSSIB_IT = 290.0
hyssibdrv%HYSSIB_NVEGP = 20
hyssibdrv%HYSSIB_NVEGIP = 11
/

&ssib
ssibdrv%WRITEINT = 3
ssibdrv%STATEVAR_AVG = 1
ssibdrv%SSIB_RFILE = "ssib.rst"
ssibdrv%SSIB_ISM = 0.30
ssibdrv%SSIB_IT = 290.0
ssibdrv%SSIB_NVEGP = 57
ssibdrv%SSIB_NVEGIP = 12
ssibdrv%SSIB_FLGRES = 0
/

&opendap
opendap_data_prefix = "/your/top-level/directory/here"
/

62

B Makefile

Set up special characters

null :=
space := $(null) $(null)
doctool :=../../utils/docsgen.sh

Check for directory in which to put executable
ifeq ($(MODEL_EXEDIR),$(null))
MODEL_EXEDIR := .
endif

Check for name of executable
ifeq ($(EXENAME),$(null))
EXENAME := LIS
endif

Check if SPMD is defined in "misc.h"
Ensure that it is defined and not just "undef SPMD" set in file
ifeq ($(SPMD),$(null))
SPMDSET := $(shell /bin/grep SPMD misc.h)
ifneq (,$(findstring define,$(SPMDSET)))
SPMD := TRUE

else
SPMD := FALSE

endif
endif

Determine platform
UNAMES := $(shell uname -s)
UMACHINE := $(shell uname -m)

ifeq ($(UNAMES),IRIX64)
INC_NETCDF := /u/jvg/local/netcdf-3.5.1/include
LIB_NETCDF := /u/jvg/local/netcdf-3.5.1/lib
ESMF_DIR := ../lib/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

endif

ifeq ($(UNAMES),AIX)

LIB_NETCDF := /usrx/local/netcdf

63

INC_NETCDF := /usrx/local/netcdf/include
LIB_MPI := /usr/lpp/ppe.poe/lib
INC_MPI := /usr/lpp/ppe.poe/include
ESMF_DIR := /nfsuser/g01/wx20je/LDAS/src-par/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

endif

ifeq ($(UNAMES),OSF1)

LIB_MPI := /usr/lib
INC_MPI := /usr/include
ESMF_DIR := ../lib/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

endif

ifeq ($(UMACHINE), i686)

INC_NETCDF := /data1/netcdf/include
LIB_NETCDF := /data1/netcdf/lib
MPI_PREFIX := /data1/jim/local/mpich-1.2.4-absoft
LIB_MPI := $(MPI_PREFIX)/lib
INC_MPI := $(MPI_PREFIX)/include
ESMF_DIR := ../lib/esmf
LIB_ESMF := $(ESMF_DIR)/lib/libO
MOD_ESMF := $(ESMF_DIR)/mod/modO

endif

Load dependency search path.
dirs := . $(shell cat Filepath)
Set cpp search path, include netcdf
cpp_dirs := $(dirs) $(INC_NETCDF) $(INC_MPI)
cpp_path := $(foreach dir,$(cpp_dirs),-I$(dir)) # format for command line

Expand any tildes in directory names. Change spaces to colons.
VPATH := $(foreach dir,$(cpp_dirs),$(wildcard $(dir)))
VPATH := $(subst $(space),:,$(VPATH))

#--
Primary target: build the model
#--
all: $(MODEL_EXEDIR)/$(EXENAME)

64

Get list of files and determine objects and dependency files
FIND_FILES = $(wildcard $(dir)/*.F $(dir)/*.f $(dir)/*.F90 $(dir)/*.c)
FILES = $(foreach dir, $(dirs),$(FIND_FILES))
SOURCES := $(sort $(notdir $(FILES)))
DEPS := $(addsuffix .d, $(basename $(SOURCES)))
OBJS := $(addsuffix .o, $(basename $(SOURCES)))
DOCS := $(addsuffix .tex, $(basename $(SOURCES)))

$(MODEL_EXEDIR)/$(EXENAME): $(OBJS)
$(FC) -o $@ $(OBJS) $(FOPTS) $(LDFLAGS)
debug: $(OBJS)

echo "FFLAGS: $(FFLAGS)"
echo "LDFLAGS: $(LDFLAGS)"
echo "OBJS: $(OBJS)"

#***
#********** Architecture-specific flags and rules***********************
#***

#--
SGI
#--

ifeq ($(UNAMES),IRIX64)

ESMF_ARCH = IRIX64
FC := f90
CPP := /lib/cpp

Library directories
LIB_DIR = ../lib/sgi-64/
HDFLIBDIR = $(LIB_DIR)
GFIOLIBDIR = $(LIB_DIR)
CPPFLAGS := -P
PSASINC :=

non-opendap
CFLAGS := $(cpp_path) -64 -c -O2 -OPT:Olimit=0 -static -DIRIX64
FFLAGS = $(cpp_path) -64 -r4 -i4 -c -cpp -I$(MOD_ESMF)/$(ESMF_ARCH) \

-DHIDE_SHR_MSG -DNO_SHR_VMATH -DIRIX64 -O2 -OPT:Olimit=0 -static

opendap
#CFLAGS := $(cpp_path) -64 -c -O2 -OPT:Olimit=0 -static -DIRIX64 -DOPENDAP
#FFLAGS = $(cpp_path) -64 -r4 -i4 -c -cpp -I$(MOD_ESMF)/$(ESMF_ARCH) \

65

-DHIDE_SHR_MSG -DNO_SHR_VMATH -DIRIX64 -O2 -OPT:Olimit=0 \
-static -DOPENDAP

debugging
#CFLAGS := $(cpp_path) -64 -c -g -static -DIRIX64
#FFLAGS = $(cpp_path) -64 -r4 -i4 -c -cpp -I$(MOD_ESMF)/$(ESMF_ARCH) \

-DHIDE_SHR_MSG -DNO_SHR_VMATH -DIRIX64 -g -static

FOPTS = $(LIB_DIR)bacio_64_sgi $(LIB_DIR)w3lib_64_sgi

LDFLAGS = -64 -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpi -L$(LIB_NETCDF) \
-lnetcdf

WARNING: -mp and -g together cause wrong answers

WARNING: - Don’t run hybrid on SGI (that’s what the -= -mp is all about)

ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -macro_expand

FFLAGS += -I$(INC_MPI) -macro_expand

LDFLAGS += -L$(LIB_MPI) -lmpi
else
FFLAGS += -DHIDE_MPI

endif

.SUFFIXES:

.SUFFIXES: .F90 .c .o

.F90.o:
$(FC) $(FFLAGS) $<
.c.o:
cc $(cpp_path) $(CFLAGS) $<

endif

#--
AIX
#--

ifeq ($(UNAMES),AIX)

ESMF_ARCH = rs6000_64
#FC = mpxlf90_r
FC = mpxlf90

66

CPP = /lib/cpp
#CC = mpcc_r
CC = mpcc
MPI_PATH = /usr/lpp/ppe.poe

Library directories
LIB_DIR = /nwprod/lib/
LIB_DIR2 = ../lib/
HDFLIBDIR = $(LIB_DIR)
GFIOLIBDIR = $(LIB_DIR)
CPPFLAGS = -P
PSASINC =
CFLAGS = $(cpp_path) -c -w -O -q64 -qcpluscmt
FFLAGS = $(cpp_path) -I$(MOD_ESMF)/$(ESMF_ARCH) -I$(MPI_PATH)/include \

-O -qstrict -qtune=auto -qarch=auto -qmaxmem=-1 -NS2000 \
-qsave -c -q64 -DAIX

FOPTS = $(LIB_DIR)libw3_4.a
LDFLAGS = -bmap:map -bloadmap:lm -lmass -L$(LIB_ESMF)/$(ESMF_ARCH) \

-lesmf -L$(LIB_DIR) -lbacio_4
ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -macro_expand
FFLAGS += -I$(INC_MPI) -macro_expand

LDFLAGS += -L$(LIB_MPI) -lmpi
else
FFLAGS += -DHIDE_MPI

endif
.F.o:
$(FC) $(FFLAGS) $<
.F90.o:
$(FC) $(FFLAGS) $<
.f.o:
$(FC) $(FFLAGS) $<
.f90.o:
.c.o:
$(CC) $(cpp_path) $(CFLAGS) $<

endif

#---
Compaq alpha - Halem cluster
#---
ifeq ($(UNAMES),OSF1)

ESMF_ARCH = alpha

67

FC := f90
CPP := /lib/cpp

Library directories
LIB_DIR = ../lib/alpha-32/
CPPFLAGS := -P
PSASINC :=
CFLAGS := $(cpp_path) -n32 -DOSF1
FFLAGS = $(cpp_path) -c -cpp -automatic -convert big_endian \

-assume byterecl -arch ev6 -tune ev6 -fpe3 \
-I$(MOD_ESMF)/$(ESMF_ARCH) -DOSF1 \
-DHIDE_SHR_MSG -DNO_SHR_VMATH

FFLAGS_DOTF90 = -DHIDE_SHR_MSG -DOSF1 -free -fpe3 -DNO_SHR_VMATH
FFLAGS_DOTF = -extend_source -omp -automatic
FOPTS = $(LIB_DIR)bacio_32_alpha $(LIB_DIR)w3lib_32_alpha
LDFLAGS = -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpi
WARNING: -mp and -g together cause wrong answers

WARNING: - Don’t run hybrid on SGI (that’s what the -= -mp is all about)

ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -I$(INC_MPI) -macro_expand

LDFLAGS += -L$(LIB_MPI) -lmpi
else
FFLAGS += -DHIDE_MPI

endif

.SUFFIXES:

.SUFFIXES: .f .f90 .F90 .c .o

.f.o:
$(FC) $(FFLAGS) $<
.F90.o:
$(FC) $(FFLAGS) $<
.c.o:
cc -c $(cpp_path) $(CFLAGS) $<
.f90.o:
$(FC) $(FFLAGS) $<

endif
#--
Linux
#--

68

ifeq ($(UMACHINE),i686)
ESMF_ARCH = linux_absoft

ifeq ($(ESMF_ARCH),linux_ifc)

FC := $(MPI_PREFIX)/bin/mpif90
CPP := /lib/cpp

CFLAGS := $(cpp_path) -c -O2
FFLAGS = $(cpp_path) -c -I$(MOD_ESMF)/$(ESMF_ARCH) -DHIDE_SHR_MSG \

-DNO_SHR_VMATH -O
LDFLAGS = -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -lmpich

endif
ifeq ($(ESMF_ARCH),linux_absoft)

#FC := $(MPI_PREFIX)/bin/mpif90
#CC := $(MPI_PREFIX)/bin/mpicc
FC := f90
CC := gcc
CPP := /lib/cpp

non-opendap, no netcdf, no esmf
CFLAGS := $(cpp_path) -c -O2 -Wall -DABSOFT -DLITTLE_ENDIAN
FFLAGS := $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1 \

-YDEALLOC=ALL -DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT \
-DLITTLE_ENDIAN

non-opendap
#CFLAGS := $(cpp_path) -c -O2 -Wall -DABSOFT -DLITTLE_ENDIAN
#FFLAGS := $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1 \

-YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) -p$(INC_NETCDF) \
-DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT -DLITTLE_ENDIAN

opendap, no netcdf, no esmf
#CFLAGS := $(cpp_path) -c -O2 -Wall -DABSOFT -DLITTLE_ENDIAN -DOPENDAP
#FFLAGS := $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1

-YDEALLOC=ALL -DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT
-DLITTLE_ENDIAN -DOPENDAP

opendap
#CFLAGS := $(cpp_path) -c -O2 -Wall -DABSOFT -DLITTLE_ENDIAN -DOPENDAP
#FFLAGS := $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1 \

-YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) -p$(INC_NETCDF) \
-DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT -DLITTLE_ENDIAN \

69

-DOPENDAP

debugging with opendap
#CFLAGS := $(cpp_path) -c -g -DABSOFT -DLITTLE_ENDIAN -DOPENDAP
#FFLAGS := $(cpp_path) -c -O1 -g -Rb -Rc -Rs -Rp -YEXT_NAMES=LCS -s \

-B108 -YCFRL=1 -YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) \
-p$(INC_NETCDF) -DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT \
-DLITTLE_ENDIAN -DOPENDAP

debugging without opendap
#CFLAGS := $(cpp_path) -c -g -DABSOFT -DLITTLE_ENDIAN
#FFLAGS := $(cpp_path) -c -O1 -g -Rb -Rc -Rs -Rp -YEXT_NAMES=LCS -s \

-B108 -YCFRL=1 -YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) \
-p$(INC_NETCDF) -DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT \
-DLITTLE_ENDIAN

debugging without opendap, esmf, netcdf
#CFLAGS := $(cpp_path) -c -gdwarf -DABSOFT -DLITTLE_ENDIAN
#FFLAGS := $(cpp_path) -c -O1 -g -m0 -Rb -Rc -Rs -Rp -YEXT_NAMES=LCS -s \

-B108 -YCFRL=1 -YDEALLOC=ALL -DHIDE_SHR_MSG -DNO_SHR_VMATH \
-DABSOFT -DLITTLE_ENDIAN

profiling -- don’t forget the -P in LDFLAGS
#CFLAGS := $(cpp_path) -c -O2 -DABSOFT -DLITTLE_ENDIAN -DOPENDAP -pg
#FFLAGS := $(cpp_path) -c -O2 -YEXT_NAMES=LCS -s -B108 -YCFRL=1 \

-YDEALLOC=ALL -p$(MOD_ESMF)/$(ESMF_ARCH) -p$(INC_NETCDF) \
-DHIDE_SHR_MSG -DNO_SHR_VMATH -DABSOFT -DLITTLE_ENDIAN \
-DOPENDAP -P

#LDFLAGS := -L$(LIB_ESMF)/$(ESMF_ARCH) -L$(LIB_NETCDF) -lnetcdf -lesmf \
-lmpich -lU77 -lm

#LDFLAGS := -lmpich -lU77 -lm
LDFLAGS := -lU77 -lm
endif

ifeq ($(ESMF_ARCH),linux_lf95)

#FC := $(MPI_PREFIX)/bin/mpif90
FC := lf95
CPP := /lib/cpp
CFLAGS := $(cpp_path) -c -O -DUSE_GCC -DLAHEY -DLITTLE_ENDIAN
FFLAGS := $(cpp_path) -c -O -DHIDE_SHR_MSG -DLINUX -DNO_SHR_VMATH \

-I$(MOD_ESMF)/$(ESMF_ARCH) -DLAHEY -DLITTLE_ENDIAN
#LDFLAGS := -L$(LIB_ESMF)/$(ESMF_ARCH) -lesmf -L$(LIB_MPI) -lmpich -s \

--staticlink
#LDFLAGS := -s --staticlink

70

LDFLAGS := -s

endif

Library directories
#LIB_DIR = ../lib/pc-32/$(ESMF_ARCH)/
LIB_DIR = ../w3lib/
HDFLIBDIR = $(LIB_DIR)
GFIOLIBDIR = $(LIB_DIR)
CPPFLAGS := -P
PSASINC :=
#FOPTS = $(LIB_DIR)bacio_32_pclinux $(LIB_DIR)w3lib_32_pclinux
FOPTS = $(LIB_DIR)libw3.a
WARNING: -mp and -g together cause wrong answers

WARNING: - Don’t run hybrid on SGI (that’s what the -= -mp is all about)

ifeq ($(SPMD),TRUE)
FFLAGS -= -mp
FFLAGS += -macro_expand
FFLAGS += -I$(INC_MPI) -macro_expand

LDFLAGS += -L$(LIB_MPI) -lmpi
else
FFLAGS += -DHIDE_MPI

endif

.SUFFIXES:

.SUFFIXES: .F90 .c .o

.F90.o:
$(FC) $(FFLAGS) $<
.c.o:
$(CC) $(cpp_path) $(CFLAGS) $<

endif

RM := rm
Add user defined compiler flags if set, and replace FC if USER option set.
FFLAGS += $(USER_FFLAGS)
ifneq ($(USER_FC),$(null))
FC := $(USER_FC)
endif

clean:

71

$(RM) -f *.o *.mod *.stb $(MODEL_EXEDIR)/$(EXENAME)

realclean:
$(RM) -f *.o *.d *.mod *.stb $(MODEL_EXEDIR)/$(EXENAME)
doc:
$(doctool)
#--
#!!!!!!!!!!!!!!!!DO NOT EDIT BELOW THIS LINE.!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#--
These rules cause a dependency file to be generated for each source
file. It is assumed that the tool "makdep" (provided with this
distribution in clm2/tools/makdep) has been built and is available in
the user’s $PATH. Files contained in the clm2 distribution are the
only files which are considered in generating each dependency. The
following filters are applied to exclude any files which are not in
the distribution (e.g. system header files like stdio.h).
#
1) Remove full paths from dependencies. This means gnumake will not break
if new versions of files are created in the directory hierarchy
specified by VPATH.
#
2) Because of 1) above, remove any file dependencies for files not in the
clm2 source distribution.
#
Finally, add the dependency file as a target of the dependency rules. This
is done so that the dependency file will automatically be regenerated
when necessary.
#
i.e. change rule
make.o : make.c make.h
to:
make.o make.d : make.c make.h
#--
DEPGEN := ./MAKDEP/makdep -s F
%.d : %.c
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
%.d : %.f
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
%.d : %.F90
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@
%.d : %.F
@echo "Building dependency file $@"
@$(DEPGEN) -f $(cpp_path) $< > $@

72

#
if goal is clean or realclean then don’t include .d files
without this is a hack, missing dependency files will be created
and then deleted as part of the cleaning process
#
INCLUDE_DEPS=TRUE
ifeq ($(MAKECMDGOALS), realclean)
INCLUDE_DEPS=FALSE
endif
ifeq ($(MAKECMDGOALS), clean)
INCLUDE_DEPS=FALSE
endif

ifeq ($(INCLUDE_DEPS), TRUE)
-include $(DEPS)
endif

73

References

[1] GrADS. http://grads.iges.org/grads/grads.html.

[2] Protex documenting system. http://gmao.gsfc.nasa.gov/software/protex.

[3] ALMA. http://www.lmd.jussieu.fr/ALMA/.

[4] CLM. http://www.cgd.ucar.edu/tss/clm.

[5] DODS. http://www.unidata.ucar.edu/packages/dods/.

[6] Noah. ftp://ftp.ncep.noaa.gov/pub/gcp/ldas/noahlsm/.

[7] VIC. http://hydrology.princeton.edu/research/lis/index.html.

[8] W3FI63 program. http://dss.ucar.edu/datasets/ds609.1/software/mords/w3fi63.f.

[9] G. J. Collatz, C Grivet, J. T. Ball, and J. A. Berry. Physiological and
environmental regulation of stomatal conducatance: Photosynthesis and
transpiration: A model that includes a laminar boundary layer. Agric.
For. Meteorol., 5:107–136, 1991.

[10] Chen. F., Mitchell. K., Schaake. J, Xue. J, Pan. H, Koren. V., Ek. M Duan,
and A. Betts. Modeling of land-surface evaporation by four schemes and
comparison with fife observations. J. Geophys. Res., 101(D3):7251–7268,
1996.

[11] P. G. Jarvis. The interpretation of leaf water potential and stomatal con-
ductance found in canopies of the field. Phil. Trans. R. Soc., 273:593–610,
1976.

[12] L. A. Richards. Capillary conduction of liquids in porous media. Physics,
1:318–333, 1931.

[13] E. Rogers, T. L. Black, D. G. Deaven, G. J. DiMego, Q. Zhao, M. Baldwin,
N. W. Junker, and Y. Lin. Changes to the operational “early” eta anal-
ysis/forecast system at the national centers of environmental prediction.
Wea. Forecasting, 11:391–413, 1996.

74

	Introduction
	What's New
	LIS 3.1 -- 4.0
	LIS 3.0 -- 3.1
	LIS 2.0 -- 3.0

	Background
	LIS
	LIS driver
	Community Land Model (CLM)
	The Community Noah Land Surface Model
	Variable Infiltration Capacity (VIC) Model
	GrADS-DODS Server

	Preliminaries
	Running Modes
	Single-Process-Based Running Mode
	MPI-Based Running Mode
	GDS-Based Running Mode
	Non-parallel Running Mode
	1 km Global Runs

	Obtaining the Source Code
	Downloading the Source Code
	Source files
	Scripts
	Post-processing
	Opendap Scripts

	Obtaining the Data-sets
	Downloading the Data-sets
	Downloading Parameter Data-sets
	Example: Downloading the 1/4 Deg. Parameter Data-sets via http
	Example: Downloading the 1/4 Deg. Parameter Data-sets via GDS

	Downloading the Forcing Data-sets
	Example: Downloading the 1/4 Deg. Forcing Data-sets via http

	Downloading the Sample Output Data-sets
	Example: Downloading The Sample 1/4 Deg. Output Data-sets Via GDS
	Viewing The Sample 1/4 Deg. Output Data-sets

	Building the Executable
	Compiling In MPI Support
	General Build Instructions
	Required Software Libraries
	Modifying the Makefile

	Compiling GrADS-DODS Support
	Generating documentation

	Running The Executable
	Configuring Run Via LIS Card File
	driver namelist
	lis_run_inputs namelist
	run_domain namelist
	param_domain namelist
	landcover namelist
	elevation namelist
	soils namelist
	lai namelist
	geos namelist
	gdas namelist
	nldas namelist
	ecmwf namelist
	berg namelist
	cmap namelist
	agrmet namelist
	clm2 namelist
	noah namelist
	vic namelist
	opendap namelist

	Domain Example
	Running Over The 1 km Domain

	Output Data Processing
	CLM Output
	Noah Output
	VIC Output

	LIS Card File
	Makefile

